Tag Archives: environment

Central Michigan University study: Plant-based fire retardants may offer a less toxic way to tame flames

28 Aug

Green Sciences Policy Institute provided an overview of retardants:

Flame retardant chemicals are used in commercial and consumer products (like furniture and building insulation) to meet flammability standards. Not all flame retardants present concerns, but the following types often do:
• Halogenated flame retardants (also known as organohalogen flame retardants) containing chlorine or bromine bonded to carbon.
• Organophosphorous flame retardants containing phosphorous bonded to carbon.
For these types of flame retardants:
• Some are associated with health and environmental concerns
• Many are inadequately tested for safety
• They provide questionable fire safety benefits as used in some products
Major uses
The major uses of flame retardant chemicals by volume in the U.S. are:
• Electronics
• Building insulation
• Polyurethane foam
• Wire and cable
Properties of Concern
Organohalogen and organophosphorous flame retardants often have one or more of the following properties of concern. Chemicals with all these properties are considered Persistent Organic Pollutants (POPs) and present significant risks to human health and environment. https://greensciencepolicy.org/topics/flame-retardants/

See, University of Massachusetts – Amherst study: New process discovered to completely degrade flame retardant in the environment https://drwilda.com/tag/tetrabromobisphenol-a/

Maria Temming of Science News reported in Plant-based fire retardants may offer a less toxic way to tame flames:

Flame retardants are going green.
Using compounds from plants, researchers are concocting a new generation of flame retardants, which one day could replace the fire-quenching chemicals added by manufacturers to furniture, electronics and other consumer products.
Many traditional synthetic flame retardants have come under fire for being linked to health problems like thyroid disruption and cancer (SN: 3/16/19, p. 14). And flame retardants that leach out of trash in landfills can persist in the environment for a long time (SN: 4/24/10, p. 12).
The scientists have not yet performed toxicity tests on the new plant-based creations. But “in general, things derived from plants are much less toxic … they’re usually degradable,” says Bob Howell, an organic chemist and polymer scientist at Central Michigan University in Mount Pleasant.
Howell’s team presented the work August 26 in San Diego at the American Chemical Society’s national meeting.
The raw ingredients for these plant-based flame retardants were gallic acid — found in nuts and tea leaves — and a substance in buckwheat called 3,5-Dihydroxybenzoic acid. Treating these compounds with a chemical called phosphoryl chloride converted them into flame-retardant chemicals named phosphorus esters. Since these plant-based ingredients are common, and the chemical treatment process is straightforward, it should be relatively easy to manufacture these flame retardants on a large scale, Howell says.
Howell and colleagues tested the flame retardants in a resin used to make electronics, cars and planes. Compared with chips of pure resin, the resin laced with flame retardant took longer to go up in flames. And “it doesn’t burn for very long, once you get it going,” Howell says. Treated chips were snuffed out in less than 10 seconds, whereas untreated chips blazed until no resin remained. The experiments did not compare the plant-based flame retardants with traditional fire-resistant substances…. https://www.sciencenews.org/article/plant-based-fire-retardants-may-offer-less-toxic-way-tame-flames

Here is the press release from the American Chemical Society:

AUGUST 26, 2019

Flame retardants—from plants

by American Chemical Society

Flame retardants are present in thousands of everyday items, from clothing to furniture to electronics. Although these substances can help prevent fire-related injuries and deaths, they could have harmful effects on human health and the environment. Of particular concern are those known as organohalogens, which are derived from petroleum. Today, scientists report potentially less toxic, biodegradable flame retardants from an unlikely source: plants.
The researchers will present their results at the American Chemical Society (ACS) Fall 2019 National Meeting & Exposition.
“The best flame-retardant chemicals have been organohalogen compounds, particularly brominated aromatics,” says Bob Howell, Ph.D., the project’s principal investigator. “The problem is, when you throw items away, and they go into a landfill, these substances can leach into the environment.”
Most organohalogen flame retardants are very stable. Microorganisms in the soil or water can’t degrade them, so they persist for many years in the environment, working their way up the food chain. In addition, some of the compounds can migrate out of items to which they are added, such as electronics, and enter household dust. Although the health effects of ingesting or breathing organohalogen flame retardants are largely unknown, some studies suggest they could be harmful, prompting California to ban the substances in children’s products, mattresses and upholstered furniture in 2018.
“A number of flame retardants are no longer available because of toxicity concerns, so there is a real need to find new materials that, one, are nontoxic and don’t persist, and two, don’t rely upon petroleum,” Howell says. His solution was to identify compounds from plants that could easily be converted into flame retardants by adding phosphorous atoms, which are known to quench flames. “We’re making compounds that are based on renewable biosources,” he says. “Very often they are nontoxic; some are even food ingredients. And they’re biodegradable—organisms are accustomed to digesting them.”
To make their plant-derived compounds, Howell and colleagues at the Center for Applications in Polymer Science at Central Michigan University began with two substances: gallic acid, commonly found in fruits, nuts and leaves; and 3,5-dihydroxybenzoic acid from buckwheat. Using a fairly simple chemical reaction, the researchers converted hydroxyl groups on these compounds to flame-retardant phosphorous esters. Then, the team added the various phosphorous esters individually to samples of an epoxy resin, a polymer often used in electronics, automobiles and aircraft, and examined the different esters’ properties with several tests.
In one of these tests, the researchers showed that the new flame retardants could strongly reduce the peak heat release rate of the epoxy resin, which reflects the intensity of the flame and how quickly it is going to spread. The plant-derived substances performed as well as many organohalogen flame retardants on the market. “As a matter of fact, they may be better,” Howell says. “Because gallic acid has three hydroxyl groups within the same molecule that can be converted to phosphorous esters, you don’t have to use as much of the additive, which reduces cost.”
The researchers also studied how the new compounds quench flames, finding that the level of oxygenation at the phosphorous atom determined the mode of action. Compounds with a high level of oxygenation (phosphates) decomposed to a substance that promoted char formation on the polymer surface, starving the flame of fuel. In contrast, compounds with a low level of oxygenation (phosphonates) decomposed to species that scavenged combustion-promoting radicals.
Howell’s team hasn’t yet performed toxicity tests, but he says that other groups have done such studies on similar compounds. “In general, phosphorous compounds are much less harmful than the corresponding organohalogens,” he notes. In addition, the plant-derived substances are not as volatile and are less likely to migrate from items into household dust. Howell hopes that the new flame retardants will attract the attention of a company that could help bring them to market, he says.
________________________________________
Explore further
Debate on banning organohalogen flame retardants heats up

More information: Phosphorus flame retardants from crop plant phenolic acids, the American Chemical Society (ACS) Fall 2019 National Meeting & Exposition.
Abstract
While polymeric materials have had an enormously positive impact on the development of modern society, for most applications they must be flame-retarded. This may be accomplished in a variety of ways, most notably by introduction of a suitable additive during processing. Traditionally, organohalogen compounds, particularly brominated aromatics, have been effective, affordable, popular gas-phase flame retardants. However, these compounds readily migrate from a polymer matrix into which they have been incorporated, persist in the environment, tend to bioaccumulate and may pose risks to human health. For this reason, the use of these compounds is coming under increasing regulatory pressure worldwide. Phosphorus compounds derived from renewable biosources provide attractive alternatives to these traditional organohalogen flame retardants. Precursors to biobased organophosphorus flame retardants are generally nontoxic and readily available at modest cost. Phenolics are ubiquitous in nature and may be isolated from numerous plants. Gallic acid (3,4,5-trihydroxybenzoic acid) is a constituent many edible plants, nuts and legumes. 3,5-Dihydroxybenzoic acid may be found in several plants, principally buckwheat. Both of these compounds may serve as the base for the generation of a series of phosphorus esters, both phosphonate and phosphate, that display good flame retardancy in DGEBA epoxy.
Provided by American Chemical Society https://phys.org/news/2019-08-flame-retardantsfrom.html
The Environmental Protection Agency (EPA) lists risks in Fact Sheet: Assessing Risks from Flame Retardants https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/fact-sheet-assessing-risks-flame-retardants

Resources:

COMPOUND SUMMARY – Tetrabromobisphenol A https://pubchem.ncbi.nlm.nih.gov/compound/Tetrabromobisphenol-A

Is the flame retardant, tetrabromobisphenol A (TBBPA), a reproductive or developmental toxicant?
Date:
February 18, 2015
Source:
Toxicology Excellence for Risk Assessment
Summary:
Two studies examined the effects of tetrabromobisphenol A (TBBPA) at oral doses of 10,100 or 1000 mg/kg bw/day over the course of 2 generations on growth as well as behavioral, neurological and neuropathologic functions in offspring. https://www.sciencedaily.com/releases/2015/02/150218092044.htm
Global Tetrabromobisphenol-A Market is Evolving with Chemicals and Materials Industry in 2019 | Get Strategic Insights. https://theindustryforecast.com/2019/07/24/global-tetrabromobisphenol-a-insights-market-sp/

Where information leads to Hope. © Dr. Wilda.com

Dr. Wilda says this about that ©

Blogs by Dr. Wilda:

COMMENTS FROM AN OLD FART©
http://drwildaoldfart.wordpress.com/

Dr. Wilda Reviews ©
http://drwildareviews.wordpress.com/

Dr. Wilda ©
https://drwilda.com/

University of Massachusetts – Amherst study: New process discovered to completely degrade flame retardant in the environment

8 Aug

Science Direct reported in Tetrabromobisphenol A:

Abstract
Tetrabromobisphenol A (TBBPA) is one of the most prevalent flame retardants, and is used in plastic paints, synthetic textiles, and electrical devices. Despite the fact that TBBPA is excreted quickly from the body, it is detected in human plasma and milk. Owing to the structural resemblance to thyroid hormones (THs), the thyroid disruption activities of TBBPA have been investigated over the past two decades. Possible action sites are plasma TH binding protein and TH receptors. In experimental animal models, TBBPA exposure induces a decrease in plasma TH levels and a delay of TH-induced metamorphosis in animals. In studies using cell lines, TBBPA shows weak agonist and antagonist activities. These in vitro and in vivo bioassays may be powerful tools for detecting the thyroid system disruption activity of TBBPA. Although recent findings suggest diverse biological effects of TBBPA on the thyroid, reproductive, and immune systems, there is still controversy regarding these effects…. https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/tetrabromobisphenol-a and https://www.sciencedirect.com/science/article/pii/B978012801028000249X
Scientists are researching the effects of Tetrabromobisphenol A.

Green Sciences Policy Institute provided an overview of retardants:

Flame retardant chemicals are used in commercial and consumer products (like furniture and building insulation) to meet flammability standards. Not all flame retardants present concerns, but the following types often do:
• Halogenated flame retardants (also known as organohalogen flame retardants) containing chlorine or bromine bonded to carbon.
• Organophosphorous flame retardants containing phosphorous bonded to carbon.
For these types of flame retardants:
• Some are associated with health and environmental concerns
• Many are inadequately tested for safety
• They provide questionable fire safety benefits as used in some products
Major uses
The major uses of flame retardant chemicals by volume in the U.S. are:
• Electronics
• Building insulation
• Polyurethane foam
• Wire and cable
Properties of Concern
Organohalogen and organophosphorous flame retardants often have one or more of the following properties of concern. Chemicals with all these properties are considered Persistent Organic Pollutants (POPs) and present significant risks to human health and environment. https://greensciencepolicy.org/topics/flame-retardants/

University of Massachusetts Amherst reported a process to degrade flame retardant.

Science Daily reported in New process discovered to completely degrade flame retardant in the environment:

A team of environmental scientists from the University of Massachusetts Amherst and China has for the first time used a dynamic, two-step process to completely degrade a common flame-retardant chemical, rendering the persistent global pollutant nontoxic.
This new process breaks down tetrabromobisohenol A (TBBPA) to harmless carbon dioxide and water. The discovery highlights the potential of using a special material, sulfidated nanoscale zerovalent iron (S-nZVI), in water treatment systems and in the natural environment to break down not only TBBPA but other organic refractory compounds that are difficult to degrade, says Jun Wu, a visiting Ph.D. student at UMass Amherst’s Stockbridge College of Agriculture and lead author of the paper published in Environmental Science & Technology….
“This research can lead to a decrease in the potential risk of TBBPA to the environment and human health,” says Wu, who began the research at the University of Science and Technology of China in Hefei. At UMass Amherst, Wu works in the pioneering lab of Baoshan Xing, professor of environmental and soil chemistry, corresponding author of the new study and one of the world’s most highly cited researchers….
Among the most common flame retardants that hinder combustion and slow the spread of fire, TBBPA is added to manufactured materials, including computer circuit boards and other electrical devices, papers, textiles and plastics.
Associated with a variety of health concerns, including cancer and hormone disruption, TBBPA has been widely detected in the environment, as well as in animals and human milk and plasma.
Although Wu and Xing’s research breaks new ground in the efforts to develop safe and effective processes to remediate groundwater and soil contaminated with TBBPA, they say more research is needed to learn how to best apply the process.
Their research was supported by grants from the National Natural Science Foundation of China and the USDA-National Institute of Food and Agriculture’s Hatch Program. https://www.sciencedaily.com/releases/2019/08/190808115102.htm

Citation:

New process discovered to completely degrade flame retardant in the environment
New research has potential application to remediate other difficult-to-degrade pollutants
Date: August 8, 2019
Source: University of Massachusetts at Amherst
Summary:
A team of environmental scientists has for the first time used a dynamic, two-step process to completely degrade a common flame-retardant chemical, rendering the persistent global pollutant nontoxic.

Journal Reference:
Jun Wu, Jian Zhao, Jun Hou, Raymond Jianxiong Zeng, Baoshan Xing. Degradation of Tetrabromobisphenol A by Sulfidated Nanoscale Zerovalent Iron in a Dynamic Two-Step Anoxic/Oxic Process. Environmental Science & Technology, 2019; 53 (14): 8105 DOI: 10.1021/acs.est.8b06834

Here is the press release from UMass Amherst:

New Process Discovered to Completely Degrade Flame Retardant in the Environment
UMass Amherst research has potential application to remediate other difficult-to-degrade pollutants
August 8, 2019
Contact: Jun Wu 413-210-2729
AMHERST, Mass. – A team of environmental scientists from the University of Massachusetts Amherst and China has for the first time used a dynamic, two-step process to completely degrade a common flame-retardant chemical, rendering the persistent global pollutant nontoxic.
This new process breaks down tetrabromobisophenol A (TBBPA) to harmless carbon dioxide and water. The discovery highlights the potential of using a special material, sulfidated nanoscale zerovalent iron (S-nZVI), in water treatment systems and in the natural environment to break down not only TBBPA but other organic refractory compounds that are difficult to degrade,says Jun Wu, a visiting Ph.D. student at UMass Amherst’s Stockbridge College of Agriculture and lead author of the paper published in Environmental Science & Technology.
“This is the first research about this dynamic, oxic/anoxic process,” Wu says. “Usually, reduction or oxidation alone is used to remove TBBPA, facilitated by S-nZVI. We combined reduction and oxidation together to degrade it completely.”
Wu emphasizes that “the technique is technically simple and environmentally friendly. That is a key point to its application.”
The research is featured on the cover of ES&T, which is widely respected for publishing papers in the environmental disciplines that are both significant and original.
“This research can lead to a decrease in the potential risk of TBBPA to the environment and human health,” says Wu, who began the research at the University of Science and Technology of China in Hefei. At UMass Amherst, Wu works in the pioneering lab of Baoshan Xing, professor of environmental and soil chemistry, corresponding author of the new study and one of the world’s most highly cited researchers.
“Our research shows a feasible and environmentally friendly process to completely degrade refractory brominated flame retardants in a combined oxic and anoxic system,” Xing says. “This is important for getting rid of these harmful compounds from the environment, thus reducing the exposure and risk.”
Among the most common flame retardants that hinder combustion and slow the spread of fire, TBBPA is added to manufactured materials, including computer circuit boards and other electrical devices, papers, textiles and plastics.
Associated with a variety of health concerns, including cancer and hormone disruption, TBBPA has been widely detected in the environment, as well as in animals and human milk and plasma.
Although Wu and Xing’s research breaks new ground in the efforts to develop safe and effective processes to remediate groundwater and soil contaminated with TBBPA, they say more research is needed to learn how to best apply the process.
Their research was supported by grants from the National Natural Science Foundation of China and the USDA-National Institute of Food and Agriculture’s Hatch Program.

The Environmental Protection Agency (EPA) lists risks in Fact Sheet: Assessing Risks from Flame Retardants https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/fact-sheet-assessing-risks-flame-retardants

Resources:
COMPOUND SUMMARY – Tetrabromobisphenol A https://pubchem.ncbi.nlm.nih.gov/compound/Tetrabromobisphenol-A

Is the flame retardant, tetrabromobisphenol A (TBBPA), a reproductive or developmental toxicant?
Date:
February 18, 2015
Source:
Toxicology Excellence for Risk Assessment
Summary:
Two studies examined the effects of tetrabromobisphenol A (TBBPA) at oral doses of 10,100 or 1000 mg/kg bw/day over the course of 2 generations on growth as well as behavioral, neurological and neuropathologic functions in offspring. https://www.sciencedaily.com/releases/2015/02/150218092044.htm

Global Tetrabromobisphenol-A Market is Evolving with Chemicals and Materials Industry in 2019 | Get Strategic Insights. https://theindustryforecast.com/2019/07/24/global-tetrabromobisphenol-a-insights-market-sp/

Where information leads to Hope. © Dr. Wilda.com

Dr. Wilda says this about that ©

Blogs by Dr. Wilda:

COMMENTS FROM AN OLD FART©
http://drwildaoldfart.wordpress.com/

Dr. Wilda Reviews ©
http://drwildareviews.wordpress.com/

Dr. Wilda ©
https://drwilda.com/

University of Miami Miller School of Medicine study: Links between neighborhood greenness and reduction in chronic diseases

24 Apr

Cheryl Katz wrote the 2012 Scientific American article, People in Poor Neighborhoods Breathe More Hazardous Particles:

Tiny particles of air pollution contain more hazardous ingredients in non-white and low-income communities than in affluent white ones, a new study shows.

The greater the concentration of Hispanics, Asians, African Americans or poor residents in an area, the more likely that potentially dangerous compounds such as vanadium, nitrates and zinc are in the mix of fine particles they breathe.

Latinos had the highest exposures to the largest number of these ingredients, while whites generally had the lowest.

The findings of the Yale University research add to evidence of a widening racial and economic gap when it comes to air pollution. Communities of color and those with low education and high poverty and unemployment face greater health risks even if their air quality meets federal health standards, according to the article published online in the scientific journal Environmental Health Perspectives.

Los Angeles, Pittsburgh, Cincinnati, St. Louis and Fresno are among the metropolitan areas with unhealthful levels of fine particles and large concentrations of poor minorities. More than 50 counties could exceed a new tighter health standard for particulates proposed by the Environmental Protection Agency.

Communities of color and those with low education and high poverty and unemployment may face greater health risks even if their air quality meets federal health standards. A pervasive air pollutant, the fine particulate matter known as PM2.5 is a mixture of emissions from diesel engines, power plants, refineries and other sources of combustion. Often called soot, the microscopic particles penetrate deep into the lungs.

The new study is the first to reveal major racial and economic differences in exposures to specific particle ingredients, some of which are linked to asthma, cardiovascular problems and cancer….                                                                   http://www.scientificamerican.com/article/people-poor-neighborhoods-breate-more-hazardous-particles/

A University of Miami Miller School of Medicine expands upon the link between neighborhood greenness and disease.

Science Daily reported in Study links neighborhood greenness to reduction in chronic diseases:

A new study of a quarter-million Miami-Dade County Medicare beneficiaries showed that higher levels of neighborhood greenness, including trees, grass and other vegetation, were linked to a significant reduction in the rate of chronic illnesses, particularly in low-to-middle income neighborhoods. Led by researchers at the University of Miami Department of Public Health Sciences at the Miller School of Medicine, and the School of Architecture, the study showed that higher greenness was linked to significantly lower rates of diabetes, hypertension and high cholesterol, as well as fewer chronic health conditions.

The findings, published online April 6 by the American Journal of Preventive Medicine, are based on 2010 — 2011 health data reported for approximately 250,000 Miami-Dade Medicare beneficiaries over age 65, and a measure of vegetative presence based on NASA satellite imagery. The study was the first of its kind to examine block-level greenness and its relationship to health outcomes in older adults, and the first to measure the impact of greenness on specific cardio-metabolic diseases.

“This study builds on our research group’s earlier analyses showing block level impacts of mixed-use and supportive building features on adults and children,” said lead study author Scott Brown, Ph.D., research assistant professor of public health sciences. Brown was a co-principal investigator on the study with Elizabeth Plater-Zyberk, M.Arch., a Malcolm Matheson Distinguished Professor in Architecture. Plater-Zyberk, who was responsible for the rewrite of the City of Miami’s zoning code in 2010, said the study results “give impetus to public agencies and property owners to plant and maintain a verdant public landscape.”

Study findings revealed that higher levels of greenness on the blocks where the study’s Medicare recipients reside, is associated with a significantly lower chronic disease risk for the residents of high greenness blocks, including a 14 percent risk reduction for diabetes, a 13 percent reduction for hypertension and a 10 percent reduction for lipid disorders…..                                                   https://www.sciencedaily.com/releases/2016/04/160421171345.htm

Citation:

Study links neighborhood greenness to reduction in chronic diseases

Date:       April 21, 2016

Source:   University of Miami Miller School of Medicine

Summary:

Higher levels of greenness (trees, park space and other vegetation) in neighborhoods is linked with significantly lower chronic illnesses, diabetes, hypertension and high cholesterol, public health researchers has shown. The findings were based on 250,000 Medicare recipients age 65 and vegetation presence measured by NASA satellite imagery.

Journal Reference:

  1. Scott C. Brown, Joanna Lombard, Kefeng Wang, Margaret M. Byrne, Matthew Toro, Elizabeth Plater-Zyberk, Daniel J. Feaster, Jack Kardys, Maria I. Nardi, Gianna Perez-Gomez, Hilda M. Pantin, José Szapocznik. Neighborhood Greenness and Chronic Health Conditions in Medicare Beneficiaries. American Journal of Preventive Medicine, 2016; DOI: 10.1016/j.amepre.2016.02.008

Am J Prev Med. 2016 Mar 31. pii: S0749-3797(16)00065-9. doi: 10.1016/j.amepre.2016.02.008. [Epub ahead of print]

Neighborhood Greenness and Chronic Health Conditions in Medicare Beneficiaries.

Brown SC1, Lombard J2, Wang K3, Byrne MM3, Toro M3, Plater-Zyberk E2, Feaster DJ3, Kardys J4, Nardi MI4, Perez-Gomez G3, Pantin HM3, Szapocznik J2.

Author information

Abstract

INTRODUCTION:

Prior studies suggest that exposure to the natural environment may impact health. The present study examines the association between objective measures of block-level greenness (vegetative presence) and chronic medical conditions, including cardiometabolic conditions, in a large population-based sample of Medicare beneficiaries in Miami-Dade County, Florida.

METHODS:

The sample included 249,405 Medicare beneficiaries aged ≥65 years whose location (ZIP+4) within Miami-Dade County, Florida, did not change, from 2010 to 2011. Data were obtained in 2013 and multilevel analyses conducted in 2014 to examine relationships between greenness, measured by mean Normalized Difference Vegetation Index from satellite imagery at the Census block level, and chronic health conditions in 2011, adjusting for neighborhood median household income, individual age, gender, race, and ethnicity.

RESULTS:

Higher greenness was significantly associated with better health, adjusting for covariates: An increase in mean block-level Normalized Difference Vegetation Index from 1 SD less to 1 SD more than the mean was associated with 49 fewer chronic conditions per 1,000 individuals, which is approximately similar to a reduction in age of the overall study population by 3 years. This same level of increase in mean Normalized Difference Vegetation Index was associated with a reduced risk of diabetes by 14%, hypertension by 13%, and hyperlipidemia by 10%. Planned post-hoc analyses revealed stronger and more consistently positive relationships between greenness and health in lower- than higher-income neighborhoods.

CONCLUSIONS:

Greenness or vegetative presence may be effective in promoting health in older populations, particularly in poor neighborhoods, possibly due to increased time outdoors, physical activity, or stress mitigation.

Copyright © 2016 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

PMID:

27061891

[PubMed – as supplied by publisher]

Here is the press release from the University of Miami:

UM Study Links Neighborhood Greenness to Reduction in Chronic Diseases

Published: April 22, 2016.
Released by University of Miami Miller School of Medicine

A new study of a quarter-million Miami-Dade County Medicare beneficiaries showed that higher levels of neighborhood greenness, including trees, grass and other vegetation, were linked to a significant reduction in the rate of chronic illnesses, particularly in low-to-middle income neighborhoods. Led by researchers at the University of Miami Department of Public Health Sciences at the Miller School of Medicine, and the School of Architecture, the study showed that higher greenness was linked to significantly lower rates of diabetes, hypertension and high cholesterol, as well as fewer chronic health conditions.

The findings, published online April 6 by the American Journal of Preventive Medicine, are based on 2010 – 2011 health data reported for approximately 250,000 Miami-Dade Medicare beneficiaries over age 65, and a measure of vegetative presence based on NASA satellite imagery. The study was the first of its kind to examine block-level greenness and its relationship to health outcomes in older adults, and the first to measure the impact of greenness on specific cardio-metabolic diseases.

“This study builds on our research group’s earlier analyses showing block level impacts of mixed-use and supportive building features on adults and children,” said lead study author Scott Brown, Ph.D., research assistant professor of public health sciences. Brown was a co-principal investigator on the study with Elizabeth Plater-Zyberk, M.Arch., a Malcolm Matheson Distinguished Professor in Architecture. Plater-Zyberk, who was responsible for the rewrite of the City of Miami’s zoning code in 2010, said the study results “give impetus to public agencies and property owners to plant and maintain a verdant public landscape.”

Study findings revealed that higher levels of greenness on the blocks where the study’s Medicare recipients reside, is associated with a significantly lower chronic disease risk for the residents of high greenness blocks, including a 14 percent risk reduction for diabetes, a 13 percent reduction for hypertension and a 10 percent reduction for lipid disorders.

“Going from a low to a high level of greenness at the block level is associated with 49 fewer chronic health conditions per 1,000 residents, which is approximately equivalent to a reduction in the biomedical aging of the study population by three years,” said Brown.

Jack Kardys, Director of the Miami-Dade County Department of Parks, Recreation and Open Spaces, participated in data interpretation along with Miami-Dade County Parks’ Chief of Planning, Research, and Design Excellence, Maria Nardi. Kardys said the study findings “illuminate the vital role of parks and greens to health and well-being, and point to the critical need for a holistic approach in planning that draws on research.”

The study findings suggest extensive potential for park, open space, and streetscape design in South Florida and the United States to consider health impacts in strategic planning. Funded by the U.S. Department of Housing and Urban Development (HUD) Office of Policy Development and Research and the Health Foundation of South Florida, the research adds to a growing body of evidence that exposure to higher levels of greenness is associated with better health outcomes, by reducing stress, air pollution, humidity and heat island impacts, and encouraging physical activity, social interaction and community cohesion.

From a design standpoint, study co-author Joanna Lombard, M.Arch., professor of architecture, noted that the goals of the County’s Parks and Open Spaces Masterplan already call for residents to have access to greenspace from the minute they walk outside of their homes, through tree-lined streets, as well as greens, parks, and open spaces within a 5 to 10 minute walk of their home, all of which have been shown to be linked to better health outcomes. “There’s so much suffering involved in the time, money and energy spent on disease burden in the U.S., which we realize that we can, to some extent, ameliorate through healthy community design,” said Lombard. “We collectively need to be attentive to the health impacts of the built environment. The associated harms are evident, and most importantly going forward, the potential benefits are significant.”

In examining the results by income level and by race, the research showed that the health benefits of greenness were proportionately stronger among all racial and ethnic groups in lower income neighborhoods. Brown said this aspect of the findings suggests that incorporating more green — trees, parks and open spaces — in low income neighborhoods could also address issues of health disparities, which have been recently highlighted in research journals and the national media.

José Szapocznik, Ph.D., professor and chair of public health sciences, and founder of the University of Miami Built Environment, Behavior, and Health Research Group, pointed out that augmenting greenness, particularly in warm climates, potentially contributes to the effectiveness of other aspects of walkability. “Providing a green feature,” said Szapocznik, “has been associated with safety, increased time outdoors, physical activity, and social interaction, and may potentially reduce disease burdens at the population level and enhance residents’ quality of life.”

This society will not have healthy children without having healthy home and school environments.

A healthy child in a healthy family who attends a healthy school in a healthy neighborhood ©

Resources:

What are Key Urban Environmental Problems?                                                                     http://web.mit.edu/urbanupgrading/urbanenvironment/issues/key-UE-issues.html

Understanding Neighborhood Effects of Concentrated Poverty                                                   https://www.huduser.gov/portal/periodicals/em/winter11/highlight2.html

Where We Live Matters for Our Health: Neighborhoods and Health                                      http://www.commissiononhealth.org/PDF/888f4a18-eb90-45be-a2f8-159e84a55a4c/Issue%20Brief%203%20Sept%2008%20-%20Neighborhoods%20and%20Health.pdf

Where information leads to Hope. ©

Dr. Wilda.com

Dr. Wilda says this about that ©

Blogs by Dr. Wilda:

COMMENTS FROM AN OLD FART©

http://drwildaoldfart.wordpress.com/

Dr. Wilda Reviews ©

https://drwildareviews.wordpress.com/

Dr. Wilda ©

https://drwilda.com/

Mc Gill University study: Fathers have a profound effect on the genetics of their children

11 Oct

Benedict Carey reports in the New York Times article, Father’s Age Is Linked to Risk of Autism and Schizophrenia:

Older men are more likely than young ones to father a child who develops autism or schizophrenia, because of random mutations that become more numerous with advancing paternal age, scientists reported on Wednesday, in the first study to quantify the effect as it builds each year. The age of mothers had no bearing on the risk for these disorders, the study found.

Experts said that the finding was hardly reason to forgo fatherhood later in life, though it might have some influence on reproductive decisions. The overall risk to a man in his 40s or older is in the range of 2 percent, at most, and there are other contributing biological factors that are entirely unknown.
But the study, published online in the journal Nature, provides support for the argument that the surging rate of autism diagnoses over recent decades is attributable in part to the increasing average age of fathers, which could account for as many as 20 to 30 percent of cases.

The findings also counter the longstanding assumption that the age of the mother is the most important factor in determining the odds of a child having developmental problems. The risk of chromosomal abnormalities, like Down syndrome, increases for older mothers, but when it comes to some complex developmental and psychiatric problems, the lion’s share of the genetic risk originates in the sperm, not the egg, the study found. Previous studies had strongly suggested as much, including an analysis published in April that found that this risk was higher at age 35 than 25 and crept up with age. The new report quantifies that risk for the first time, calculating how much it accumulates each year.

The research team found that the average child born to a 20-year-old father had 25 random mutations that could be traced to paternal genetic material. The number increased steadily by two mutations a year, reaching 65 mutations for offspring of 40-year-old men.

The average number of mutations coming from the mother’s side was 15, no matter her age, the study found.

“This study provides some of the first solid scientific evidence for a true increase in the condition” of autism, said Dr. Fred R. Volkmar, director of the Child Study Center at the Yale School of Medicine, who was not involved in the research. “It is extremely well done and the sample meticulously characterized.” http://www.nytimes.com/2012/08/23/health/fathers-age-is-linked-to-risk-of-autism-and-schizophrenia.html?emc=eta1

A Mc Gill University study shows that fathers have a profound effect on the genetics of their children.

Science Daily reported in Environmental memories transmitted from a father to his grandchildren:

If you have diabetes, or cancer or even heart problems, maybe you should blame it on your dad’s behaviour or environment. Or even your grandfather’s. That’s because, in recent years, scientists have shown that, before his offspring are even conceived, a father’s life experiences involving food, drugs, exposure to toxic products and even stress can affect the development and health not only of his children, but even of his grandchildren.

But, despite a decade of work in the area, scientists haven’t been able to understand much about how this transmission of environmental memories over several generations takes place. McGill researchers and their Swiss collaborators think that they have now found a key part of the molecular puzzle. They have discovered that proteins known as histones, which have attracted relatively little attention until now, may play a crucial role in the process.

They believe that this finding, which they describe in a paper just published in Science, has the potential to profoundly change our understanding of how we inherit things. That’s because the researchers show that there is something apart from DNA that plays an important role in inheritance in general, and could determine whether a father’s children and grandchildren will be healthy or not….

There’s more than just DNA involved in inheritance

What they discovered was that there were dire consequences for the offspring both in terms of their development e.g. where offspring were prone to birth defects and had abnormal skeletal formation, and in terms of their surviving at all. Moreover, what was most surprising, was that these effects could still be seen two generations later.

“When we saw the decreased survivability across generations and the developmental abnormalities we were really blown away as it was never thought that altering something outside the DNA, i.e. a protein, could be involved in inheritance,” said Sarah Kimmins, from McGill’s Dept. of Animal Science, and one of the lead authors on the paper. Kimmins is also the Canada Research Chair in Epigenetics, Reproduction and Development.

Kimmins added, “These findings are remarkable because they indicate that information other than DNA is involved in heritability. The study highlights the critical role that fathers play in the health of their children and even grand-children. Since chemical modifications on histones are susceptible to environmental exposures, the work opens new avenues of investigation for the possible prevention and treatment of diseases of various kinds, affecting health across generations.” http://www.sciencedaily.com/releases/2015/10/151008142622.htm?utm_source=dlvr.it&utm_medium=facebook

Citation:

Environmental memories transmitted from a father to his grandchildren
Date: October 8, 2015

Source: McGill University

Summary:

If you have diabetes, or cancer or even heart problems, maybe you should blame it on your dad’s behavior or environment. Or even your grandfather’s. That’s because, in recent years, scientists have shown that, before his offspring are even conceived, a father’s life experiences involving food, drugs, exposure to toxic products and even stress can affect the development and health not only of his children, but even of his grandchildren. But, despite a decade of work in the area, scientists haven’t been able to understand much about how this transmission of environmental memories over several generations takes place. Scientists think that they have now found a key part of the molecular puzzle. They have discovered that proteins known as histones, which have attracted relatively little attention until now, may play a crucial role in the process.

Journal Reference:
1. Keith Siklenka, Serap Erkek, Maren Godmann, Romain Lambrot, Serge McGraw, Christine Lafleur, Tamara Cohen, Jianguo Xia, Matthew Suderman, Michael Hallett, Jacquetta Trasler, Antoine H. F. M. Peters, and Sarah Kimmins. Disruption of histone methylation in developing sperm impairs offspring health transgenerationally. Science, 8 October 2015 DOI: 10.1126/science.aab2006

Here is the press release from Mc Gill University:

The father effect

News

If you have diabetes, or cancer or even heart problems, maybe you should blame it on your dad’s behaviour or environment. Or even your grandfather’s. That’s because, in recent years, scientists have shown that, before his offspring are even conceived, a father’s life experiences involving food, drugs, exposure to toxic products and even stress can affect the development and health not only of his children, but even of his grandchildren.

But, despite a decade of work in the area, scientists haven’t been able to understand much about how this transmission of environmental memories over several generations takes place. McGill researchers and their Swiss collaborators think that they have now found a key part of the molecular puzzle. They have discovered that proteins known as histones, which have attracted relatively little attention until now, may play a crucial role in the process.

They believe that this finding, which they describe in a paper just published in Science, has the potential to profoundly change our understanding of how we inherit things. That’s because the researchers show that there is something apart from DNA that plays an important role in inheritance in general, and could determine whether a father’s children and grandchildren will be healthy or not.

Taking a new direction

In the past, most of the research in this area, which is known as epigenetics, has focused on a process involving DNA and certain molecules (known as methyl groups) that attach to DNA and act a bit like a dimmer switch – turning up or down the expression of specific genes.

The researchers were curious about whether histones might play a role in transmitting heritable information from fathers to their offspring because they are part of the content of sperm transmitted at fertilization. Histones are distinct from our DNA, although they combine with it during cell formation, acting a bit like a spool around which the DNA winds.

So, to test their theory about the possible role of histones in guiding embryo development the researchers created mice in which they slightly altered the biochemical information on the histones during sperm cell formation and then measured the results. (It’s a bit like putting a nick in a spool of thread and seeing how it affects the way the thread then loops around the spool.) They then studied the effects on the offspring.
________________________________________
• Gestational diabetes: A diabetes predictor in fathers
• Expectant dads get depressed too
________________________________________
There’s more than just DNA involved in inheritance

What they discovered was that there were dire consequences for the offspring both in terms of their development e.g. where offspring were prone to birth defects and had abnormal skeletal formation, and in terms of their surviving at all. Moreover, what was most surprising, was that these effects could still be seen two generations later.

“When we saw the decreased survivability across generations and the developmental abnormalities we were really blown away as it was never thought that altering something outside the DNA, i.e. a protein, could be involved in inheritance,” said Sarah Kimmins, from McGill’s Dept. of Animal Science, and one of the lead authors on the paper. Kimmins is also the Canada Research Chair in Epigenetics, Reproduction and Development.

Kimmins added, “These findings are remarkable because they indicate that information other than DNA is involved in heritability. The study highlights the critical role that fathers play in the health of their children and even grand-children. Since chemical modifications on histones are susceptible to environmental exposures, the work opens new avenues of investigation for the possible prevention and treatment of diseases of various kinds, affecting health across generations.”

Experts who have commented or are willing to be interviewed about the paper:
John R. McCarrey, Robert and Helen Kleberg Distinguished Chair in Cellular & Molecular Biology, Department of Biology, University of Texas at San Antonio
Prof. Marisa Bartolomei, Dept. of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania

“While there is substantial evidence that fathers can transmit diseases and adverse phenotypes to their children in the absence of genetic mutations, this is the first study that shows a feasible mechanism by which this can happen. This gives researchers confidence to pursue histone retention in the male germ cells as a mechanism of inheritance….and it also will serve as a reminder to fathers to be diligent protectors of their germline.”

The research was funded by: Canadian Institutes of Health Research (CIHR), Genome Quebec, the Reseau de Reproduction Quebecois, Fonds de recherche Nature et technologies (FRQNT), Boehringer Ingelheim Fond, Swiss National Science Foundation and the Novartis Research Foundation.

Contact Information
Contact:
Sarah Kimmins
Organization:
Dept. of Animal Science
Email:
sarah.kimmins@mcgill.ca
Secondary Contact Information
Contact:
Katherine Gombay
Organization:
Media Relations Office
Secondary Email:
katherine.gombay@mcgill.ca
Office Phone:
514-398-2189

The increased rate of poverty has profound implications if this society believes that ALL children have the right to a good basic education. Moi blogs about education issues so the reader could be perplexed sometimes because moi often writes about other things like nutrition, families, and personal responsibility issues. Why? The reader might ask? Because children will have the most success in school if they are ready to learn. Ready to learn includes proper nutrition for a healthy body and the optimum situation for children is a healthy family.

Where information leads to Hope. © Dr. Wilda.com

Dr. Wilda says this about that ©

Blogs by Dr. Wilda:

COMMENTS FROM AN OLD FART©
http://drwildaoldfart.wordpress.com/

Dr. Wilda Reviews ©
http://drwildareviews.wordpress.com/

Dr. Wilda ©
https://drwilda.com/

University of North Carolina Chapel Hill study: Stress felt by children shows up in their art

9 Dec

Both the culture and the economy are experiencing turmoil. For some communities, the unsettled environment is a new phenomenon, for other communities, children have been stressed for generations. According to the article, Understanding Depression which was posted at the Kids Health site:

Depression is the most common mental health problem in the United States. Each year it affects 17 million people of all age groups, races, and economic backgrounds.
As many as 1 in every 33 children may have depression; in teens, that number may be as high as 1 in 8. http://kidshealth.org/parent/emotions/feelings/understanding_depression.html

Jyoti Madhusoodanan and Nature magazine reported in the Scientific American article, Stress Alters Children’s Genomes:

Growing up in a stressful social environment leaves lasting marks on young chromosomes, a study of African American boys has revealed. Telomeres, repetitive DNA sequences that protect the ends of chromosomes from fraying over time, are shorter in children from poor and unstable homes than in children from more nurturing families…
http://www.scientificamerican.com/article/stress-alters-childrens-genomes/?WT.mc_id=SA_Facebook

Not only are the child’s gene’s altered, but there are behavioral indications of the stress being felt by the child.

Will Huntsberry of NPR wrote in the article, Kids’ Drawings Speak Volumes About Home:

When children reach 6 years old, their drawings matter.

Not because of those purple unicorns or pinstripe dragons but because of how kids sketch themselves and the very real people in their lives.

In a new study, researchers found that children who experienced chaos at home — including high levels of noise, excessive crowding, clutter and lack of structure — were more likely to draw themselves at a distance from their parents or much smaller in size relative to other figures.

In some cases, these kids drew themselves with drooping arms and indifferent or sad faces.

Their drawings were a reflection of this simple fact: Chaos at home meant parents were interacting with them less and, in many cases, the interactions that were happening were shorter and interrupted.

As a result, kids ended up with a depreciated sense of self, says Roger Mills-Koonce, who led the study with Bharathi Zvara at UNC-Chapel Hill. To be clear, Mills-Koonce did not blame parents or caretakers but called this kind of stress in the home a “function of poverty….”                                                                                                                                http://www.npr.org/blogs/ed/2014/12/08/368693069/kids-drawings-speak-volumes-about-home

Citation:

The Mediating Role of Parenting in the Associations Between Household Chaos and Children’s Representations of Family Dysfunction

Zvara, B. J., Mills-Koonce, W. R., Garrett-Peters, P., Wagner, N. J., Vernon-Feagans, L., Cox, M., & the Family Life Project Key Contributors

2014

From the abstract: “Children’s drawings are thought to reflect their mental representations of self and their interpersonal relations within families. Household chaos is believed to disrupt key proximal processes related to optimal development. The present study examines the mediating role of parenting behaviors in the relations between two measures of household chaos, instability and disorganization, and how they may be evidenced in children’s representations of family dysfunction as derived from their drawings. The sample (N = 962) is from a longitudinal study of rural poverty exploring the ways in which child, family, and contextual factors shape development over time. Findings reveal that, after controlling for numerous factors including child and primary caregiver covariates, there were significant indirect effects from cumulative family disorganization, but not cumulative family instability, on children’s representation of family dysfunction through parenting behaviors. Results suggest that the proximal effects of daily disorganization outweigh the effects of periodic instability overtime.”

Related Project(s):

Children Living in Rural Poverty: The Continuation of the Family Life Project
Family Life Project

Available here: Attachment & Human Development

Or, you may utilize your local academic library to locate this copyrighted material.

Citation: Zvara, B. J., Mills-Koonce, W. R., Garrett-Peters, P., Wagner, N. J., Vernon-Feagans, L., Cox, M., & the Family Life Project Key Contributors. (2014). The mediating role of parenting in the associations between household chaos and children’s representations of family dysfunction. Attachment & Human Development. Advance online publication. doi:10.1080/14616734.2014.966124

DOI: 10.1080/14616734.2014.966124

http://fpg.unc.edu/resources/mediating-role-parenting-associations-between-household-chaos-and-childrens-representation

If you or your child needs help for depression or another illness, then go to a reputable medical provider. There is nothing wrong with taking the steps necessary to get well.

Related:

Schools have to deal with depressed and troubled children

https://drwilda.wordpress.com/2011/11/15/schools-have-to-deal-with-depressed-and-troubled-children/

School psychologists are needed to treat troubled children

https://drwilda.wordpress.com/2012/02/27/school-psychologists-are-needed-to-treat-troubled-children/

Resources:

  1. About.Com’s Depression In Young Children                                                          http://depression.about.com/od/child/Young_Children.htm
  2. Psych Central’s Depression In Young Children                                                      http://depression.about.com/od/child/Young_Children.htm
  3. Psychiatric News’ Study Helps Pinpoint Children With Depression http://psychnews.psychiatryonline.org/newsarticle.aspx?articleid=106034
  4. Family Doctor’s What Is Depression?                                                                               http://familydoctor.org/familydoctor/en/diseases-conditions/depression.html
  5. WebMD’s Depression In Children                                                                                     http://www.webmd.com/depression/guide/depression-children
  6. Healthline’s Is Your Child Depressed?                                                                                   http://www.healthline.com/hlvideo-5min/how-to-help-your-child-through-depression-517095449
  7. Medicine.Net’s Depression In Children http://www.onhealth.com/depression_in_children/article.htm

Where information leads to Hope. © Dr. Wilda.com

Dr. Wilda says this about that ©

Blogs by Dr. Wilda:

COMMENTS FROM AN OLD FART©

http://drwildaoldfart.wordpress.com/

Dr. Wilda Reviews ©

http://drwildareviews.wordpress.com/

Dr. Wilda ©

https://drwilda.com/

For exclusive content: THE OLD BLACK FART
Subscribe at http://beta.tidbitts.com/dr-wilda-the-old-black-fart/the-old-black-fart

Tulane University Medical School study: Family violence affects the DNA of children

17 Jun

Moi reported about the effect stress has on genes in Penn State study: Stress alters children’s genomes https://drwilda.com/2014/04/08/penn-state-study-stress-alters-childrens-genomes/ A Tulane Medical School study finds that family violence or trauma alters a child’s genomes.

Science Daily reported in the article, Family violence leaves genetic imprint on children:

A new Tulane University School of Medicine study finds that the more fractured families are by domestic violence or trauma, the more likely that children will bear the scars down to their DNA.
Researchers discovered that children in homes affected by domestic violence, suicide or the incarceration of a family member have significantly shorter telomeres, which is a cellular marker of aging, than those in stable households. The findings are published online in the latest issue of the journal Pediatrics.
Telomeres are the caps at the end of chromosomes that keep them from shrinking when cells replicate. Shorter telomeres are linked to higher risks for heart disease, obesity, cognitive decline, diabetes, mental illness and poor health outcomes in adulthood. Researchers took genetic samples from 80 children ages 5 to 15 in New Orleans and interviewed parents about their home environments and exposures to adverse life events….
The study found that gender moderated the impact of family instability. Traumatic family events were more detrimental to young girls as they were more likely to have shortened telomeres. There was also a surprising protective effect for boys: mothers who had achieved a higher level of education had a positive association with telomere length, but only in boys under 10.
Ultimately, the study suggests that the home environment is an important intervention target to reduce the biological impacts of adversity in the lives of young children, Drury said. http://www.sciencedaily.com/releases/2014/06/140617102505.htm?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+sciencedaily%2Ftop_news%2Ftop_science+%28ScienceDaily%3A+Top+Science+News%29&utm_content=FaceBook

Citation:

Family violence leaves genetic imprint on children
Date: June 17, 2014
Source: Tulane University
Summary:
Children in homes affected by violence, suicide, or the incarceration of a family member have significantly shorter telomeres -— a cellular marker of aging — than those in stable households. The study suggests that the home environment is an important intervention target to reduce the biological impacts of adversity in the lives of young children.
Journal Reference:
1. S. S. Drury, E. Mabile, Z. H. Brett, K. Esteves, E. Jones, E. A. Shirtcliff, K. P. Theall. The Association of Telomere Length With Family Violence and Disruption. PEDIATRICS, 2014; 134 (1): e128 DOI: 10.1542/peds.2013-3415

Here is the press release from Tulane University:

Study: Family violence leaves genetic imprint on children
June 16, 2014
Keith Brannon
Phone: 504-862-8789

kbrannon@tulane.edu
A new Tulane University School of Medicine study finds that the more fractured families are by domestic violence or trauma, the more likely that children will bear the scars down to their DNA.
Researchers discovered that children in homes affected by domestic violence, suicide or the incarceration of a family member have significantly shorter telomeres, which is a cellular marker of aging, than those in stable households. The findings are published online in the latest issue of the journal Pediatrics.
Telomeres are the caps at the end of chromosomes that keep them from shrinking when cells replicate. Shorter telomeres are linked to higher risks for heart disease, obesity, cognitive decline, diabetes, mental illness and poor health outcomes in adulthood. Researchers took genetic samples from 80 children ages 5 to 15 in New Orleans and interviewed parents about their home environments and exposures to adverse life events.
“Family-level stressors, such as witnessing a family member get hurt, created an environment that affected the DNA within the cells of the children,” said lead author Dr. Stacy Drury, director of the Behavioral and Neurodevelopmental Genetics Laboratory at Tulane. “The greater the number of exposures these kids had in life, the shorter their telomeres were – and this was after controlling for many other factors, including socioeconomic status, maternal education, parental age and the child’s age.”
The study found that gender moderated the impact of family instability. Traumatic family events were more detrimental to young girls as they were more likely to have shortened telomeres. There was also a surprising protective effect for boys: mothers who had achieved a higher level of education had a positive association with telomere length, but only in boys under 10.
Ultimately, the study suggests that the home environment is an important intervention target to reduce the biological impacts of adversity in the lives of young children, Drury said.

See, School psychologists are needed to treat troubled children https://drwilda.com/2012/02/27/school-psychologists-are-needed-to-treat-troubled-children/

Our goal as a society should be:
A healthy child in a healthy family who attends a healthy school in a healthy neighborhood ©

Related:

Schools have to deal with depressed and troubled children https://drwilda.wordpress.com/2011/11/15/schools-have-to-deal-with-depressed-and-troubled-children/

School psychologists are needed to treat troubled children https://drwilda.wordpress.com/2012/02/27/school-psychologists-are-needed-to-treat-troubled-children/

Battling teen addiction: ‘Recovery high schools’ https://drwilda.wordpress.com/2012/07/08/battling-teen-addiction-recovery-high-schools/

Resources:

About.Com’s Depression In Young Children http://depression.about.com/od/child/Young_Children.htm

Psych Central’s Depression In Young Children http://depression.about.com/od/child/Young_Children.htm

Psychiatric News’ Study Helps Pinpoint Children With Depression
http://psychnews.psychiatryonline.org/newsarticle.aspx?articleid=106034

Family Doctor’s What Is Depression? http://familydoctor.org/familydoctor/en/diseases-conditions/depression.html

WebMD’s Depression In Children http://www.webmd.com/depression/guide/depression-children

Healthline’s Is Your Child Depressed? http://www.healthline.com/hlvideo-5min/how-to-help-your-child-through-depression-517095449

Medicine.Net’s Depression In Children http://www.onhealth.com/depression_in_children/article.htm

If you or your child needs help for depression or another illness, then go to a reputable medical provider. There is nothing wrong with taking the steps necessary to get well.

Where information leads to Hope. © Dr. Wilda.com

Dr. Wilda says this about that ©

Blogs by Dr. Wilda:

COMMENTS FROM AN OLD FART© http://drwildaoldfart.wordpress.com

Dr. Wilda Reviews © http://drwildareviews.wordpress.com/

Dr. Wilda © https://drwilda.com/

Penn State study: Stress alters children’s genomes

8 Apr

Moi said in Schools have to deal with depressed and troubled children:
Both the culture and the economy are experiencing turmoil. For some communities, the unsettled environment is a new phenomenon, for other communities, children have been stressed for generations. According to the article, Understanding Depression which was posted at the Kids Health site:

Depression is the most common mental health problem in the United States. Each year it affects 17 million people of all age groups, races, and economic backgrounds.
As many as 1 in every 33 children may have depression; in teens, that number may be as high as 1 in 8. http://kidshealth.org/parent/emotions/feelings/understanding_depression.html

Schools are developing strategies to deal with troubled kids.

Jyoti Madhusoodanan and Nature magazine reported in the Scientific American article, Stress Alters Children’s Genomes:

Growing up in a stressful social environment leaves lasting marks on young chromosomes, a study of African American boys has revealed. Telomeres, repetitive DNA sequences that protect the ends of chromosomes from fraying over time, are shorter in children from poor and unstable homes than in children from more nurturing families.
When researchers examined the DNA of 40 boys from major US cities at age 9, they found that the telomeres of children from harsh home environments were 19% shorter than those of children from advantaged backgrounds. The length of telomeres is often considered to be a biomarker of chronic stress.
The study, published today in the Proceedings of the National Academy of Sciences, brings researchers closer to understanding how social conditions in childhood can influence long-term health, says Elissa Epel, a health psychologist at the University of California, San Francisco, who was not involved in the research.
Participants’ DNA samples and socio-economic data were collected as part of the Fragile Families and Child Wellbeing Study, an effort funded by the National Institutes of Health to track nearly 5,000 children, the majority of whom were born to unmarried parents in large US cities in 1998–2000. Children’s environments were rated on the basis of their mother’s level of education; the ratio of a family’s income to needs; harsh parenting; and whether family structure was stable, says lead author Daniel Notterman, a molecular biologist at Pennsylvania State University in Hershey.
The telomeres of boys whose mothers had a high-school diploma were 32% longer compared with those of boys whose mothers had not finished high school. Children who came from stable families had telomeres that were 40% longer than those of children who had experienced many changes in family structure, such as a parent with multiple partners.
Genetic links
The link between stressful home environments and telomere length is moderated by genetic variants in pathways that process two chemical transmitters in the brain, serotonin and dopamine, the study found. Previous studies have correlated variants in some of the genes studied, such as TPH2, with depression, bipolar disorder and other mental-health issues. Variants of another gene, 5-HTT, reduce the amount of the protein that recycles serotonin in nerve synapses. Some alleles of these genes are thought to increase the sensitivity of carriers to external risks…. http://www.scientificamerican.com/article/stress-alters-childrens-genomes/?WT.mc_id=SA_Facebook

Citation:

Social disadvantage, genetic sensitivity, and children’s telomere length
1. Colter Mitchella,
2. John Hobcraftb,
3. Sara S. McLanahanc,1,
4. Susan Rutherford Siegeld,
5. Arthur Bergd,
6. Jeanne Brooks-Gunne,
7. Irwin Garfinkelf, and
8. Daniel Nottermand,g,1
Author Affiliations
Significance
This paper makes two contributions to research on the link between the social environment and health. Using data from a birth cohort study, we show that, among African American boys, those who grow up in highly disadvantaged environments have shorter telomeres (at age 9) than boys who grow up in highly advantaged environments. We also find that the association between the social environment and telomere length (TL) is moderated by genetic variation within the serotonin and dopamine pathways. Boys with the highest genetic sensitivity scores had the shortest TL when exposed to disadvantaged environments and the longest TL when exposed to advantaged environments. To our knowledge, this report is the first to document a gene–social environment interaction for TL, a biomarker of stress exposure.
Abstract
Disadvantaged social environments are associated with adverse health outcomes. This has been attributed, in part, to chronic stress. Telomere length (TL) has been used as a biomarker of chronic stress: TL is shorter in adults in a variety of contexts, including disadvantaged social standing and depression. We use data from 40, 9-y-old boys participating in the Fragile Families and Child Wellbeing Study to extend this observation to African American children. We report that exposure to disadvantaged environments is associated with reduced TL by age 9 y. We document significant associations between low income, low maternal education, unstable family structure, and harsh parenting and TL. These effects were moderated by genetic variants in serotonergic and dopaminergic pathways. Consistent with the differential susceptibility hypothesis, subjects with the highest genetic sensitivity scores had the shortest TL when exposed to disadvantaged social environments and the longest TL when exposed to advantaged environments.
gene–environment
adversity
senescence
Footnotes
↵1To whom correspondence may be addressed. E-mail: dan1@princeton.edu or mclanaha@princeton.edu.
Author contributions: C.M., J.H., S.S.M., J.B.-G., I.G., and D.N. designed research; C.M., J.H., S.S.M., J.B.-G., I.G., and D.N. performed research; S.R.S. and D.N. contributed new reagents/analytic tools; C.M., J.H., S.S.M., A.B., J.B.-G., I.G., and D.N. analyzed data; and C.M. and D.N. wrote the paper.
Reviewers: T.E.S., Geffen School of Medicine, University of California, Los Angeles; S.J.S., Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health.
The authors declare no conflict of interest.
This article contains supporting information online at http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1404293111/-/DCSupplemental.
Freely available online through the PNAS open access option.

Here is the press release from Penn State:

Disadvantaged environments affect genetic material, study finds
By Scott Gilbert
April 8, 2014
HERSHEY, Pa. — Children experiencing chronic stress from a disadvantaged life have shorter telomeres than their advantaged peers, according to a study led by Dr. Daniel Notterman, vice dean for research and graduate studies, and professor of pediatrics, and biochemistry and molecular biology at Penn State College of Medicine.
Telomeres are DNA sequences at the end of each chromosome that protect the ends of the chromosomes from damage. They vary in length per person and shrink as a person ages, a process that may be linked to health and disease.
The negative health effects of long-term chronic stress may be connected to the shortening of telomeres. Telomeres shorten faster in individuals experiencing chronic stress, such as that from living in a disadvantaged environment.
Notterman and colleagues studied genetic information from 40 9-year-old African-American boys.
Boys from disadvantaged environments had shorter telomeres than peers in the study who were not. In addition, the effect of environment on telomere length was mediated by genes involved with the function of two neurotransmitters, dopamine and serotonin. Neurotransmitters help transmit signals between brain cells and send information throughout the body.
For boys with genetic variants of dopamine or serotonin pathways that conferred greater sensitivity to environmental signals associated with stress, those from disadvantaged environments had the shortest telomeres, and those from advantaged environments had the longest.
The results suggest a link between genetic factors and social environment associated with changing telomere length and provides a biomarker for chronic stress exposure in children as young as 9, according to the authors.
Researchers also from Penn State College of Medicine are Arthur Berg, associate professor of biostatistics and bioinformatics, and Sue Siegel, assistant professor of biochemistry and molecular biology.
The study is published in Proceedings of the National Academy of Sciences (PNAS) and was supported by the National Institutes of Health-National Institute of Child Health and Human Development, and the Penn State Clinical and Translational Science Institute. For more information, visit PNAS’s Early Edition.
Sarah D. Sparks writes in the Education Week article, Research Traces Impacts of Childhood Adversity:
The stress of a spelling bee or a challenging science project can enhance a student’s focus and promote learning. But the stress of a dysfunctional or unstable home life can poison a child’s cognitive ability for a lifetime, according to new research.
While educators and psychologists have said for decades that the effects of poverty interfere with students’ academic achievement, new evidence from cognitive and neuroscience is showing exactly how adversity in childhood damages students’ long-term learning and health….
Good experiences, like nurturing parents and rich early-child-care environments, help build and reinforce neural connections in areas such as language development and self-control, while adversity weakens those connections.
Over time, the connections, good or bad, stabilize, “and you can’t go back and rewire; you have to adapt,” Dr. Shonkoff said. “If you’ve built on strong foundations, that’s good, and if you have weak foundations, the brain has to work harder, and it costs more to the brain and society…”
The Centers for Disease Control and Prevention provides access to the peer-reviewed publications resulting from The ACE Study. http://acestudy.org/

See, School psychologists are needed to treat troubled children https://drwilda.com/2012/02/27/school-psychologists-are-needed-to-treat-troubled-children/

Our goal as a society should be:

A healthy child in a healthy family who attends a healthy school in a healthy neighborhood ©

Related:

Schools have to deal with depressed and troubled children
https://drwilda.wordpress.com/2011/11/15/schools-have-to-deal-with-depressed-and-troubled-children/

School psychologists are needed to treat troubled children
https://drwilda.wordpress.com/2012/02/27/school-psychologists-are-needed-to-treat-troubled-children/

Battling teen addiction: ‘Recovery high schools’
https://drwilda.wordpress.com/2012/07/08/battling-teen-addiction-recovery-high-schools/

Resources:
1. About.Com’s Depression In Young Children
http://depression.about.com/od/child/Young_Children.htm

2. Psych Central’s Depression In Young Children
http://depression.about.com/od/child/Young_Children.htm

3. Psychiatric News’ Study Helps Pinpoint Children With Depression http://psychnews.psychiatryonline.org/newsarticle.aspx?articleid=106034

4. Family Doctor’s What Is Depression?
http://familydoctor.org/familydoctor/en/diseases-conditions/depression.html

5. WebMD’s Depression In Children
http://www.webmd.com/depression/guide/depression-children

6. Healthline’s Is Your Child Depressed?
http://www.healthline.com/hlvideo-5min/how-to-help-your-child-through-depression-517095449

7. Medicine.Net’s Depression In Children
http://www.onhealth.com/depression_in_children/article.htm

If you or your child needs help for depression or another illness, then go to a reputable medical provider. There is nothing wrong with taking the steps necessary to get well.

Where information leads to Hope. © Dr. Wilda.com

Dr. Wilda says this about that ©

Blogs by Dr. Wilda:

COMMENTS FROM AN OLD FART© http://drwildaoldfart.wordpress.com
Dr. Wilda Reviews © http://drwildareviews.wordpress.com/

Dr. Wilda © https://drwilda.com/