Tag Archives: flame retardant

Central Michigan University study: Plant-based fire retardants may offer a less toxic way to tame flames

28 Aug

Green Sciences Policy Institute provided an overview of retardants:

Flame retardant chemicals are used in commercial and consumer products (like furniture and building insulation) to meet flammability standards. Not all flame retardants present concerns, but the following types often do:
• Halogenated flame retardants (also known as organohalogen flame retardants) containing chlorine or bromine bonded to carbon.
• Organophosphorous flame retardants containing phosphorous bonded to carbon.
For these types of flame retardants:
• Some are associated with health and environmental concerns
• Many are inadequately tested for safety
• They provide questionable fire safety benefits as used in some products
Major uses
The major uses of flame retardant chemicals by volume in the U.S. are:
• Electronics
• Building insulation
• Polyurethane foam
• Wire and cable
Properties of Concern
Organohalogen and organophosphorous flame retardants often have one or more of the following properties of concern. Chemicals with all these properties are considered Persistent Organic Pollutants (POPs) and present significant risks to human health and environment. https://greensciencepolicy.org/topics/flame-retardants/

See, University of Massachusetts – Amherst study: New process discovered to completely degrade flame retardant in the environment https://drwilda.com/tag/tetrabromobisphenol-a/

Maria Temming of Science News reported in Plant-based fire retardants may offer a less toxic way to tame flames:

Flame retardants are going green.
Using compounds from plants, researchers are concocting a new generation of flame retardants, which one day could replace the fire-quenching chemicals added by manufacturers to furniture, electronics and other consumer products.
Many traditional synthetic flame retardants have come under fire for being linked to health problems like thyroid disruption and cancer (SN: 3/16/19, p. 14). And flame retardants that leach out of trash in landfills can persist in the environment for a long time (SN: 4/24/10, p. 12).
The scientists have not yet performed toxicity tests on the new plant-based creations. But “in general, things derived from plants are much less toxic … they’re usually degradable,” says Bob Howell, an organic chemist and polymer scientist at Central Michigan University in Mount Pleasant.
Howell’s team presented the work August 26 in San Diego at the American Chemical Society’s national meeting.
The raw ingredients for these plant-based flame retardants were gallic acid — found in nuts and tea leaves — and a substance in buckwheat called 3,5-Dihydroxybenzoic acid. Treating these compounds with a chemical called phosphoryl chloride converted them into flame-retardant chemicals named phosphorus esters. Since these plant-based ingredients are common, and the chemical treatment process is straightforward, it should be relatively easy to manufacture these flame retardants on a large scale, Howell says.
Howell and colleagues tested the flame retardants in a resin used to make electronics, cars and planes. Compared with chips of pure resin, the resin laced with flame retardant took longer to go up in flames. And “it doesn’t burn for very long, once you get it going,” Howell says. Treated chips were snuffed out in less than 10 seconds, whereas untreated chips blazed until no resin remained. The experiments did not compare the plant-based flame retardants with traditional fire-resistant substances…. https://www.sciencenews.org/article/plant-based-fire-retardants-may-offer-less-toxic-way-tame-flames

Here is the press release from the American Chemical Society:

AUGUST 26, 2019

Flame retardants—from plants

by American Chemical Society

Flame retardants are present in thousands of everyday items, from clothing to furniture to electronics. Although these substances can help prevent fire-related injuries and deaths, they could have harmful effects on human health and the environment. Of particular concern are those known as organohalogens, which are derived from petroleum. Today, scientists report potentially less toxic, biodegradable flame retardants from an unlikely source: plants.
The researchers will present their results at the American Chemical Society (ACS) Fall 2019 National Meeting & Exposition.
“The best flame-retardant chemicals have been organohalogen compounds, particularly brominated aromatics,” says Bob Howell, Ph.D., the project’s principal investigator. “The problem is, when you throw items away, and they go into a landfill, these substances can leach into the environment.”
Most organohalogen flame retardants are very stable. Microorganisms in the soil or water can’t degrade them, so they persist for many years in the environment, working their way up the food chain. In addition, some of the compounds can migrate out of items to which they are added, such as electronics, and enter household dust. Although the health effects of ingesting or breathing organohalogen flame retardants are largely unknown, some studies suggest they could be harmful, prompting California to ban the substances in children’s products, mattresses and upholstered furniture in 2018.
“A number of flame retardants are no longer available because of toxicity concerns, so there is a real need to find new materials that, one, are nontoxic and don’t persist, and two, don’t rely upon petroleum,” Howell says. His solution was to identify compounds from plants that could easily be converted into flame retardants by adding phosphorous atoms, which are known to quench flames. “We’re making compounds that are based on renewable biosources,” he says. “Very often they are nontoxic; some are even food ingredients. And they’re biodegradable—organisms are accustomed to digesting them.”
To make their plant-derived compounds, Howell and colleagues at the Center for Applications in Polymer Science at Central Michigan University began with two substances: gallic acid, commonly found in fruits, nuts and leaves; and 3,5-dihydroxybenzoic acid from buckwheat. Using a fairly simple chemical reaction, the researchers converted hydroxyl groups on these compounds to flame-retardant phosphorous esters. Then, the team added the various phosphorous esters individually to samples of an epoxy resin, a polymer often used in electronics, automobiles and aircraft, and examined the different esters’ properties with several tests.
In one of these tests, the researchers showed that the new flame retardants could strongly reduce the peak heat release rate of the epoxy resin, which reflects the intensity of the flame and how quickly it is going to spread. The plant-derived substances performed as well as many organohalogen flame retardants on the market. “As a matter of fact, they may be better,” Howell says. “Because gallic acid has three hydroxyl groups within the same molecule that can be converted to phosphorous esters, you don’t have to use as much of the additive, which reduces cost.”
The researchers also studied how the new compounds quench flames, finding that the level of oxygenation at the phosphorous atom determined the mode of action. Compounds with a high level of oxygenation (phosphates) decomposed to a substance that promoted char formation on the polymer surface, starving the flame of fuel. In contrast, compounds with a low level of oxygenation (phosphonates) decomposed to species that scavenged combustion-promoting radicals.
Howell’s team hasn’t yet performed toxicity tests, but he says that other groups have done such studies on similar compounds. “In general, phosphorous compounds are much less harmful than the corresponding organohalogens,” he notes. In addition, the plant-derived substances are not as volatile and are less likely to migrate from items into household dust. Howell hopes that the new flame retardants will attract the attention of a company that could help bring them to market, he says.
________________________________________
Explore further
Debate on banning organohalogen flame retardants heats up

More information: Phosphorus flame retardants from crop plant phenolic acids, the American Chemical Society (ACS) Fall 2019 National Meeting & Exposition.
Abstract
While polymeric materials have had an enormously positive impact on the development of modern society, for most applications they must be flame-retarded. This may be accomplished in a variety of ways, most notably by introduction of a suitable additive during processing. Traditionally, organohalogen compounds, particularly brominated aromatics, have been effective, affordable, popular gas-phase flame retardants. However, these compounds readily migrate from a polymer matrix into which they have been incorporated, persist in the environment, tend to bioaccumulate and may pose risks to human health. For this reason, the use of these compounds is coming under increasing regulatory pressure worldwide. Phosphorus compounds derived from renewable biosources provide attractive alternatives to these traditional organohalogen flame retardants. Precursors to biobased organophosphorus flame retardants are generally nontoxic and readily available at modest cost. Phenolics are ubiquitous in nature and may be isolated from numerous plants. Gallic acid (3,4,5-trihydroxybenzoic acid) is a constituent many edible plants, nuts and legumes. 3,5-Dihydroxybenzoic acid may be found in several plants, principally buckwheat. Both of these compounds may serve as the base for the generation of a series of phosphorus esters, both phosphonate and phosphate, that display good flame retardancy in DGEBA epoxy.
Provided by American Chemical Society https://phys.org/news/2019-08-flame-retardantsfrom.html
The Environmental Protection Agency (EPA) lists risks in Fact Sheet: Assessing Risks from Flame Retardants https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/fact-sheet-assessing-risks-flame-retardants

Resources:

COMPOUND SUMMARY – Tetrabromobisphenol A https://pubchem.ncbi.nlm.nih.gov/compound/Tetrabromobisphenol-A

Is the flame retardant, tetrabromobisphenol A (TBBPA), a reproductive or developmental toxicant?
Date:
February 18, 2015
Source:
Toxicology Excellence for Risk Assessment
Summary:
Two studies examined the effects of tetrabromobisphenol A (TBBPA) at oral doses of 10,100 or 1000 mg/kg bw/day over the course of 2 generations on growth as well as behavioral, neurological and neuropathologic functions in offspring. https://www.sciencedaily.com/releases/2015/02/150218092044.htm
Global Tetrabromobisphenol-A Market is Evolving with Chemicals and Materials Industry in 2019 | Get Strategic Insights. https://theindustryforecast.com/2019/07/24/global-tetrabromobisphenol-a-insights-market-sp/

Where information leads to Hope. © Dr. Wilda.com

Dr. Wilda says this about that ©

Blogs by Dr. Wilda:

COMMENTS FROM AN OLD FART©
http://drwildaoldfart.wordpress.com/

Dr. Wilda Reviews ©
http://drwildareviews.wordpress.com/

Dr. Wilda ©
https://drwilda.com/

University of Massachusetts – Amherst study: New process discovered to completely degrade flame retardant in the environment

8 Aug

Science Direct reported in Tetrabromobisphenol A:

Abstract
Tetrabromobisphenol A (TBBPA) is one of the most prevalent flame retardants, and is used in plastic paints, synthetic textiles, and electrical devices. Despite the fact that TBBPA is excreted quickly from the body, it is detected in human plasma and milk. Owing to the structural resemblance to thyroid hormones (THs), the thyroid disruption activities of TBBPA have been investigated over the past two decades. Possible action sites are plasma TH binding protein and TH receptors. In experimental animal models, TBBPA exposure induces a decrease in plasma TH levels and a delay of TH-induced metamorphosis in animals. In studies using cell lines, TBBPA shows weak agonist and antagonist activities. These in vitro and in vivo bioassays may be powerful tools for detecting the thyroid system disruption activity of TBBPA. Although recent findings suggest diverse biological effects of TBBPA on the thyroid, reproductive, and immune systems, there is still controversy regarding these effects…. https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/tetrabromobisphenol-a and https://www.sciencedirect.com/science/article/pii/B978012801028000249X
Scientists are researching the effects of Tetrabromobisphenol A.

Green Sciences Policy Institute provided an overview of retardants:

Flame retardant chemicals are used in commercial and consumer products (like furniture and building insulation) to meet flammability standards. Not all flame retardants present concerns, but the following types often do:
• Halogenated flame retardants (also known as organohalogen flame retardants) containing chlorine or bromine bonded to carbon.
• Organophosphorous flame retardants containing phosphorous bonded to carbon.
For these types of flame retardants:
• Some are associated with health and environmental concerns
• Many are inadequately tested for safety
• They provide questionable fire safety benefits as used in some products
Major uses
The major uses of flame retardant chemicals by volume in the U.S. are:
• Electronics
• Building insulation
• Polyurethane foam
• Wire and cable
Properties of Concern
Organohalogen and organophosphorous flame retardants often have one or more of the following properties of concern. Chemicals with all these properties are considered Persistent Organic Pollutants (POPs) and present significant risks to human health and environment. https://greensciencepolicy.org/topics/flame-retardants/

University of Massachusetts Amherst reported a process to degrade flame retardant.

Science Daily reported in New process discovered to completely degrade flame retardant in the environment:

A team of environmental scientists from the University of Massachusetts Amherst and China has for the first time used a dynamic, two-step process to completely degrade a common flame-retardant chemical, rendering the persistent global pollutant nontoxic.
This new process breaks down tetrabromobisohenol A (TBBPA) to harmless carbon dioxide and water. The discovery highlights the potential of using a special material, sulfidated nanoscale zerovalent iron (S-nZVI), in water treatment systems and in the natural environment to break down not only TBBPA but other organic refractory compounds that are difficult to degrade, says Jun Wu, a visiting Ph.D. student at UMass Amherst’s Stockbridge College of Agriculture and lead author of the paper published in Environmental Science & Technology….
“This research can lead to a decrease in the potential risk of TBBPA to the environment and human health,” says Wu, who began the research at the University of Science and Technology of China in Hefei. At UMass Amherst, Wu works in the pioneering lab of Baoshan Xing, professor of environmental and soil chemistry, corresponding author of the new study and one of the world’s most highly cited researchers….
Among the most common flame retardants that hinder combustion and slow the spread of fire, TBBPA is added to manufactured materials, including computer circuit boards and other electrical devices, papers, textiles and plastics.
Associated with a variety of health concerns, including cancer and hormone disruption, TBBPA has been widely detected in the environment, as well as in animals and human milk and plasma.
Although Wu and Xing’s research breaks new ground in the efforts to develop safe and effective processes to remediate groundwater and soil contaminated with TBBPA, they say more research is needed to learn how to best apply the process.
Their research was supported by grants from the National Natural Science Foundation of China and the USDA-National Institute of Food and Agriculture’s Hatch Program. https://www.sciencedaily.com/releases/2019/08/190808115102.htm

Citation:

New process discovered to completely degrade flame retardant in the environment
New research has potential application to remediate other difficult-to-degrade pollutants
Date: August 8, 2019
Source: University of Massachusetts at Amherst
Summary:
A team of environmental scientists has for the first time used a dynamic, two-step process to completely degrade a common flame-retardant chemical, rendering the persistent global pollutant nontoxic.

Journal Reference:
Jun Wu, Jian Zhao, Jun Hou, Raymond Jianxiong Zeng, Baoshan Xing. Degradation of Tetrabromobisphenol A by Sulfidated Nanoscale Zerovalent Iron in a Dynamic Two-Step Anoxic/Oxic Process. Environmental Science & Technology, 2019; 53 (14): 8105 DOI: 10.1021/acs.est.8b06834

Here is the press release from UMass Amherst:

New Process Discovered to Completely Degrade Flame Retardant in the Environment
UMass Amherst research has potential application to remediate other difficult-to-degrade pollutants
August 8, 2019
Contact: Jun Wu 413-210-2729
AMHERST, Mass. – A team of environmental scientists from the University of Massachusetts Amherst and China has for the first time used a dynamic, two-step process to completely degrade a common flame-retardant chemical, rendering the persistent global pollutant nontoxic.
This new process breaks down tetrabromobisophenol A (TBBPA) to harmless carbon dioxide and water. The discovery highlights the potential of using a special material, sulfidated nanoscale zerovalent iron (S-nZVI), in water treatment systems and in the natural environment to break down not only TBBPA but other organic refractory compounds that are difficult to degrade,says Jun Wu, a visiting Ph.D. student at UMass Amherst’s Stockbridge College of Agriculture and lead author of the paper published in Environmental Science & Technology.
“This is the first research about this dynamic, oxic/anoxic process,” Wu says. “Usually, reduction or oxidation alone is used to remove TBBPA, facilitated by S-nZVI. We combined reduction and oxidation together to degrade it completely.”
Wu emphasizes that “the technique is technically simple and environmentally friendly. That is a key point to its application.”
The research is featured on the cover of ES&T, which is widely respected for publishing papers in the environmental disciplines that are both significant and original.
“This research can lead to a decrease in the potential risk of TBBPA to the environment and human health,” says Wu, who began the research at the University of Science and Technology of China in Hefei. At UMass Amherst, Wu works in the pioneering lab of Baoshan Xing, professor of environmental and soil chemistry, corresponding author of the new study and one of the world’s most highly cited researchers.
“Our research shows a feasible and environmentally friendly process to completely degrade refractory brominated flame retardants in a combined oxic and anoxic system,” Xing says. “This is important for getting rid of these harmful compounds from the environment, thus reducing the exposure and risk.”
Among the most common flame retardants that hinder combustion and slow the spread of fire, TBBPA is added to manufactured materials, including computer circuit boards and other electrical devices, papers, textiles and plastics.
Associated with a variety of health concerns, including cancer and hormone disruption, TBBPA has been widely detected in the environment, as well as in animals and human milk and plasma.
Although Wu and Xing’s research breaks new ground in the efforts to develop safe and effective processes to remediate groundwater and soil contaminated with TBBPA, they say more research is needed to learn how to best apply the process.
Their research was supported by grants from the National Natural Science Foundation of China and the USDA-National Institute of Food and Agriculture’s Hatch Program.

The Environmental Protection Agency (EPA) lists risks in Fact Sheet: Assessing Risks from Flame Retardants https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/fact-sheet-assessing-risks-flame-retardants

Resources:
COMPOUND SUMMARY – Tetrabromobisphenol A https://pubchem.ncbi.nlm.nih.gov/compound/Tetrabromobisphenol-A

Is the flame retardant, tetrabromobisphenol A (TBBPA), a reproductive or developmental toxicant?
Date:
February 18, 2015
Source:
Toxicology Excellence for Risk Assessment
Summary:
Two studies examined the effects of tetrabromobisphenol A (TBBPA) at oral doses of 10,100 or 1000 mg/kg bw/day over the course of 2 generations on growth as well as behavioral, neurological and neuropathologic functions in offspring. https://www.sciencedaily.com/releases/2015/02/150218092044.htm

Global Tetrabromobisphenol-A Market is Evolving with Chemicals and Materials Industry in 2019 | Get Strategic Insights. https://theindustryforecast.com/2019/07/24/global-tetrabromobisphenol-a-insights-market-sp/

Where information leads to Hope. © Dr. Wilda.com

Dr. Wilda says this about that ©

Blogs by Dr. Wilda:

COMMENTS FROM AN OLD FART©
http://drwildaoldfart.wordpress.com/

Dr. Wilda Reviews ©
http://drwildareviews.wordpress.com/

Dr. Wilda ©
https://drwilda.com/