Central Michigan University study: Plant-based fire retardants may offer a less toxic way to tame flames

28 Aug

Green Sciences Policy Institute provided an overview of retardants:

Flame retardant chemicals are used in commercial and consumer products (like furniture and building insulation) to meet flammability standards. Not all flame retardants present concerns, but the following types often do:
• Halogenated flame retardants (also known as organohalogen flame retardants) containing chlorine or bromine bonded to carbon.
• Organophosphorous flame retardants containing phosphorous bonded to carbon.
For these types of flame retardants:
• Some are associated with health and environmental concerns
• Many are inadequately tested for safety
• They provide questionable fire safety benefits as used in some products
Major uses
The major uses of flame retardant chemicals by volume in the U.S. are:
• Electronics
• Building insulation
• Polyurethane foam
• Wire and cable
Properties of Concern
Organohalogen and organophosphorous flame retardants often have one or more of the following properties of concern. Chemicals with all these properties are considered Persistent Organic Pollutants (POPs) and present significant risks to human health and environment. https://greensciencepolicy.org/topics/flame-retardants/

See, University of Massachusetts – Amherst study: New process discovered to completely degrade flame retardant in the environment https://drwilda.com/tag/tetrabromobisphenol-a/

Maria Temming of Science News reported in Plant-based fire retardants may offer a less toxic way to tame flames:

Flame retardants are going green.
Using compounds from plants, researchers are concocting a new generation of flame retardants, which one day could replace the fire-quenching chemicals added by manufacturers to furniture, electronics and other consumer products.
Many traditional synthetic flame retardants have come under fire for being linked to health problems like thyroid disruption and cancer (SN: 3/16/19, p. 14). And flame retardants that leach out of trash in landfills can persist in the environment for a long time (SN: 4/24/10, p. 12).
The scientists have not yet performed toxicity tests on the new plant-based creations. But “in general, things derived from plants are much less toxic … they’re usually degradable,” says Bob Howell, an organic chemist and polymer scientist at Central Michigan University in Mount Pleasant.
Howell’s team presented the work August 26 in San Diego at the American Chemical Society’s national meeting.
The raw ingredients for these plant-based flame retardants were gallic acid — found in nuts and tea leaves — and a substance in buckwheat called 3,5-Dihydroxybenzoic acid. Treating these compounds with a chemical called phosphoryl chloride converted them into flame-retardant chemicals named phosphorus esters. Since these plant-based ingredients are common, and the chemical treatment process is straightforward, it should be relatively easy to manufacture these flame retardants on a large scale, Howell says.
Howell and colleagues tested the flame retardants in a resin used to make electronics, cars and planes. Compared with chips of pure resin, the resin laced with flame retardant took longer to go up in flames. And “it doesn’t burn for very long, once you get it going,” Howell says. Treated chips were snuffed out in less than 10 seconds, whereas untreated chips blazed until no resin remained. The experiments did not compare the plant-based flame retardants with traditional fire-resistant substances…. https://www.sciencenews.org/article/plant-based-fire-retardants-may-offer-less-toxic-way-tame-flames

Here is the press release from the American Chemical Society:

AUGUST 26, 2019

Flame retardants—from plants

by American Chemical Society

Flame retardants are present in thousands of everyday items, from clothing to furniture to electronics. Although these substances can help prevent fire-related injuries and deaths, they could have harmful effects on human health and the environment. Of particular concern are those known as organohalogens, which are derived from petroleum. Today, scientists report potentially less toxic, biodegradable flame retardants from an unlikely source: plants.
The researchers will present their results at the American Chemical Society (ACS) Fall 2019 National Meeting & Exposition.
“The best flame-retardant chemicals have been organohalogen compounds, particularly brominated aromatics,” says Bob Howell, Ph.D., the project’s principal investigator. “The problem is, when you throw items away, and they go into a landfill, these substances can leach into the environment.”
Most organohalogen flame retardants are very stable. Microorganisms in the soil or water can’t degrade them, so they persist for many years in the environment, working their way up the food chain. In addition, some of the compounds can migrate out of items to which they are added, such as electronics, and enter household dust. Although the health effects of ingesting or breathing organohalogen flame retardants are largely unknown, some studies suggest they could be harmful, prompting California to ban the substances in children’s products, mattresses and upholstered furniture in 2018.
“A number of flame retardants are no longer available because of toxicity concerns, so there is a real need to find new materials that, one, are nontoxic and don’t persist, and two, don’t rely upon petroleum,” Howell says. His solution was to identify compounds from plants that could easily be converted into flame retardants by adding phosphorous atoms, which are known to quench flames. “We’re making compounds that are based on renewable biosources,” he says. “Very often they are nontoxic; some are even food ingredients. And they’re biodegradable—organisms are accustomed to digesting them.”
To make their plant-derived compounds, Howell and colleagues at the Center for Applications in Polymer Science at Central Michigan University began with two substances: gallic acid, commonly found in fruits, nuts and leaves; and 3,5-dihydroxybenzoic acid from buckwheat. Using a fairly simple chemical reaction, the researchers converted hydroxyl groups on these compounds to flame-retardant phosphorous esters. Then, the team added the various phosphorous esters individually to samples of an epoxy resin, a polymer often used in electronics, automobiles and aircraft, and examined the different esters’ properties with several tests.
In one of these tests, the researchers showed that the new flame retardants could strongly reduce the peak heat release rate of the epoxy resin, which reflects the intensity of the flame and how quickly it is going to spread. The plant-derived substances performed as well as many organohalogen flame retardants on the market. “As a matter of fact, they may be better,” Howell says. “Because gallic acid has three hydroxyl groups within the same molecule that can be converted to phosphorous esters, you don’t have to use as much of the additive, which reduces cost.”
The researchers also studied how the new compounds quench flames, finding that the level of oxygenation at the phosphorous atom determined the mode of action. Compounds with a high level of oxygenation (phosphates) decomposed to a substance that promoted char formation on the polymer surface, starving the flame of fuel. In contrast, compounds with a low level of oxygenation (phosphonates) decomposed to species that scavenged combustion-promoting radicals.
Howell’s team hasn’t yet performed toxicity tests, but he says that other groups have done such studies on similar compounds. “In general, phosphorous compounds are much less harmful than the corresponding organohalogens,” he notes. In addition, the plant-derived substances are not as volatile and are less likely to migrate from items into household dust. Howell hopes that the new flame retardants will attract the attention of a company that could help bring them to market, he says.
Explore further
Debate on banning organohalogen flame retardants heats up

More information: Phosphorus flame retardants from crop plant phenolic acids, the American Chemical Society (ACS) Fall 2019 National Meeting & Exposition.
While polymeric materials have had an enormously positive impact on the development of modern society, for most applications they must be flame-retarded. This may be accomplished in a variety of ways, most notably by introduction of a suitable additive during processing. Traditionally, organohalogen compounds, particularly brominated aromatics, have been effective, affordable, popular gas-phase flame retardants. However, these compounds readily migrate from a polymer matrix into which they have been incorporated, persist in the environment, tend to bioaccumulate and may pose risks to human health. For this reason, the use of these compounds is coming under increasing regulatory pressure worldwide. Phosphorus compounds derived from renewable biosources provide attractive alternatives to these traditional organohalogen flame retardants. Precursors to biobased organophosphorus flame retardants are generally nontoxic and readily available at modest cost. Phenolics are ubiquitous in nature and may be isolated from numerous plants. Gallic acid (3,4,5-trihydroxybenzoic acid) is a constituent many edible plants, nuts and legumes. 3,5-Dihydroxybenzoic acid may be found in several plants, principally buckwheat. Both of these compounds may serve as the base for the generation of a series of phosphorus esters, both phosphonate and phosphate, that display good flame retardancy in DGEBA epoxy.
Provided by American Chemical Society https://phys.org/news/2019-08-flame-retardantsfrom.html
The Environmental Protection Agency (EPA) lists risks in Fact Sheet: Assessing Risks from Flame Retardants https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/fact-sheet-assessing-risks-flame-retardants


COMPOUND SUMMARY – Tetrabromobisphenol A https://pubchem.ncbi.nlm.nih.gov/compound/Tetrabromobisphenol-A

Is the flame retardant, tetrabromobisphenol A (TBBPA), a reproductive or developmental toxicant?
February 18, 2015
Toxicology Excellence for Risk Assessment
Two studies examined the effects of tetrabromobisphenol A (TBBPA) at oral doses of 10,100 or 1000 mg/kg bw/day over the course of 2 generations on growth as well as behavioral, neurological and neuropathologic functions in offspring. https://www.sciencedaily.com/releases/2015/02/150218092044.htm
Global Tetrabromobisphenol-A Market is Evolving with Chemicals and Materials Industry in 2019 | Get Strategic Insights. https://theindustryforecast.com/2019/07/24/global-tetrabromobisphenol-a-insights-market-sp/

Where information leads to Hope. © Dr. Wilda.com

Dr. Wilda says this about that ©

Blogs by Dr. Wilda:


Dr. Wilda Reviews ©

Dr. Wilda ©

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: