Tag Archives: Columbia University’s Mailman School of Public Health

Columbia University’s Mailman School of Public Health: Aspirin may halve air pollution harms

27 Oct

Yvette Brazier in the article, Uses, benefits, and risks of aspirin, which was reviewed by Justin Choi, MD, wrote:

Aspirin, or acetylsalicylic acid (ASA), is commonly used as a pain reliever for minor aches and pains and to reduce fever. It is also an anti-inflammatory drug and can be used as a blood thinner.
People with a high risk of blood clots, stroke, and heart attack can use aspirin long-term in low doses.
Aspirin contains salicylate, which derives from willow bark. Its use was first recorded around 400 BCE, in the time of Hippocrates, when people chewed willow bark to relieve inflammation and fever.
It is often given to patients immediately after a heart attack to prevent further clot formation and cardiac tissue death.
Fast facts on aspirin
Here are some key points about aspirin. More detail is in the main article.
• Aspirin is one of the most widely used medications in the world.
• It comes from salicylate, which can be found in plants such as willow trees and myrtle.
• Aspirin was the first non-steroidal anti-inflammatory drug (NSAID) to be discovered.
• It interacts with a number of other drugs, including warfarin and methotrexate.
What is aspirin?
Aspirin has a range of uses, including the treatment of pain and inflammation and reduction of blood clotting.
Aspirin is a non-steroidal anti-inflammatory drug (NSAID).
NSAIDs are medications with the following effects:
• Analgesic: Relieves pain without anesthesia or loss of consciousness
• Antipyretic: Reduces a fever
• Anti-inflammatory: Lowers inflammation when used in higher doses
Non-steroidal means they are not steroids. Steroids often have similar benefits, but they can have unwanted side effects.
As analgesics, NSAIDs tend to be non-narcotic. This means they do not cause insensibility or stupor. Aspirin was the first NSAID to be discovered…. https://www.medicalnewstoday.com/articles/161255.php

Another use for aspirin is to reduce the harm caused by pollution.

Science Daily reported in Aspirin may halve air pollution harm:

A new study is the first to report evidence that nonsteroidal anti-inflammatory drugs (NSAIDs) like aspirin may lessen the adverse effects of air pollution exposure on lung function. The team of researchers from the Columbia Mailman School of Public Health, Harvard Chan School of Public Health, Boston University School of Medicine published their findings in the American Journal of Respiratory and Critical Care Medicine.
The researchers analyzed a subset of data collected from a cohort of 2,280 male veterans from the greater Boston area who were given tests to determine their lung function. The average age of participants was 73 years. The researchers examined the relationship between test results, self-reported NSAID use, and ambient particulate matter (PM) and black carbon in the month preceding the test, while accounting for a variety of factors, including the health status of the subject and whether or not he was a smoker. They found that the use of any NSAID nearly halved of the effect of PM on lung function, with the association consistent across all four weekly air pollution measurements from same-day to 28 days prior to the lung function test.
Because most of the people in the study cohort who took NSAIDs used aspirin, the researchers say the modifying effect they observed was mainly from aspirin, but add that effects of non-aspirin NSAIDs are worthy of further exploration. While the mechanism is unknown, the researchers speculate that NSAIDs mitigate inflammation brought about by air pollution.
“Our findings suggest that aspirin and other NSAIDs may protect the lungs from short-term spikes in air pollution,” says first and corresponding author Xu Gao, PhD, a post-doctoral research scientist in the Department of Environmental Health Sciences at the Columbia Mailman School. “Of course, it is still important to minimize our exposure to air pollution, which is linked to a host of adverse health effects, from cancer to cardiovascular disease.”
“While environmental policies have made considerable progress toward reducing our overall exposure to air pollution, even in places with low levels of air pollution, short-term spikes are still commonplace,” says senior author Andrea Baccarelli, MD, PhD, chair of the Department of Environmental Health Sciences at the Columbia Mailman School. “For this reason, it is important to identify means to minimize those harms.”
An earlier study by Baccarelli found that B vitamins may also play a role in reducing the health impact of air pollution…. https://www.sciencedaily.com/releases/2019/10/191002165233.htm

Citation:

Aspirin may halve air pollution harms
Date: October 2, 2019
Source: Columbia University’s Mailman School of Public Health
Summary:
A new study is the first to report evidence that nonsteroidal anti-inflammatory drugs (NSAIDs) like aspirin may lessen the adverse effects of air pollution exposure on lung function. The researchers found that the use of any NSAID nearly halved of the effect of PM on lung function, with the association consistent across all four weekly air pollution measurements from same-day to 28 days prior to the lung function test.

Journal Reference:
Xu Gao, Brent Coull, Xihong Lin, Pantel Vokonas, Joel Schwartz, Andrea A Baccarelli. Nonsteroidal Anti-Inflammatory Drugs Modify the Effect of Short-Term Air Pollution on Lung Function. American Journal of Respiratory and Critical Care Medicine, 2019; DOI: 10.1164/rccm.201905-1003LE

Here is the press release from Columbia:

Aspirin may prevent air pollution harms

by Columbia University’s Mailman School of Public Health

A new study is the first to report evidence that nonsteroidal anti-inflammatory drugs (NSAIDs) like aspirin may lessen the adverse effects of air pollution exposure on lung function. The team of researchers from the Columbia Mailman School of Public Health, Harvard Chan School of Public Health, Boston University School of Medicine published their findings in the American Journal of Respiratory and Critical Care Medicine.
The researchers analyzed a subset of data collected from a cohort of 2,280 male veterans from the greater Boston area who were given tests to determine their lung function. The average age of participants was 73 years. The researchers examined the relationship between test results, self-reported NSAID use, and ambient particulate matter (PM) and black carbon in the month preceding the test, while accounting for a variety of factors, including the health status of the subject and whether or not he was a smoker. They found that the use of any NSAID nearly halved of the effect of PM on lung function, with the association consistent across all four weekly air pollution measurements from same-day to 28 days prior to the lung function test.
Because most of the people in the study cohort who took NSAIDs used aspirin, the researchers say the modifying effect they observed was mainly from aspirin, but add that effects of non-aspirin NSAIDs are worthy of further exploration. While the mechanism is unknown, the researchers speculate that NSAIDs mitigate inflammation brought about by air pollution.
“Our findings suggest that aspirin and other NSAIDs may protect the lungs from short-term spikes in air pollution,” says first and corresponding author Xu Gao, Ph.D., a post-doctoral research scientist in the Department of Environmental Health Sciences at the Columbia Mailman School. “Of course, it is still important to minimize our exposure to air pollution, which is linked to a host of adverse health effects, from cancer to cardiovascular disease.”
“While environmental policies have made considerable progress toward reducing our overall exposure to air pollution, even in places with low levels of air pollution, short-term spikes are still commonplace,” says senior author Andrea Baccarelli, MD, Ph.D., chair of the Department of Environmental Health Sciences at the Columbia Mailman School. “For this reason, it is important to identify means to minimize those harms.”
An earlier study by Baccarelli found that B vitamins may also play a role in reducing the health impact of air pollution.
________________________________________
Explore further
Pain medications linked to higher cardiovascular risks in patients with osteoarthritis
________________________________________
More information: Xu Gao et al, Nonsteroidal Anti-Inflammatory Drugs Modify the Effect of Short-Term Air Pollution on Lung Function, American Journal of Respiratory and Critical Care Medicine (2019). DOI: 10.1164/rccm.201905-1003LE
Journal information: American Journal of Respiratory and Critical Care Medicine
Provided by Columbia University’s Mailman School of Public Health
236 shares

The National Institute of Environmental Health Sciences (NIH) site has good basic information about air pollution.

According to NIH:

Air pollution is a mixture of natural and man-made substances in the air we breathe. It is typically separated into two categories: outdoor air pollution and indoor air pollution.
Outdoor air pollution involves exposures that take place outside of the built environment. Examples include:
• Fine particles produced by the burning of fossil fuels (i.e. the coal and petroleum used in energy production)
• Noxious gases (sulfur dioxide, nitrogen oxides, carbon monoxide, chemical vapors, etc.)
• Ground-level ozone (a reactive form of oxygen and a primary component of urban smog)
• Tobacco Smoke
Indoor air pollution involves exposures to particulates, carbon oxides, and other pollutants carried by indoor air or dust. Examples include:
• Gases (carbon monoxide, radon, etc.)
• Household products and chemicals
• Building materials (asbestos, formaldehyde, lead, etc.)
• Outdoor indoor allergens (cockroach and mouse dropping, etc.)
• Tobacco smoke
• Mold and pollen
In some instances, outdoor air pollution can make its way indoors by way of open windows, doors, ventilation, etc.
What health effects are linked to air pollution?
Over the past 30 years, researchers have unearthed a wide array of health effects which are believed to be associated with air pollution exposure. Among them are respiratory diseases (including asthma and changes in lung function), cardiovascular diseases, adverse pregnancy outcomes (such as preterm birth), and even death.
In 2013, the World Health Organization concluded that outdoor air pollution is carcinogen to humans.
How can I reduce my risk for air pollution exposure?
Indoor air pollution can be reduced by making sure that a building is well-ventilated and cleaned regularly to prevent the buildup of agents like dust and mold. Occupants would also be wise to remove any known pollutants and or irritants (aerosols, stringent cleaning supplies, etc.) whenever possible.
Outdoor air pollution exposures can be reduced by checking one’s Air Quality Index (AQI), avoiding heavy traffic when possible, and avoiding secondhand tobacco smoke…. https://www.niehs.nih.gov/health/topics/agents/air-pollution/index.cfm

As with any medical procedure, before beginning a medical regime, a competent medical practitioner must be consulted.

Where information leads to Hope. © Dr. Wilda.com

Dr. Wilda says this about that ©

Blogs by Dr. Wilda:

COMMENTS FROM AN OLD FART©
http://drwildaoldfart.wordpress.com/

Dr. Wilda Reviews ©
http://drwildareviews.wordpress.com/

Dr. Wilda ©
https://drwilda.com/

Columbia University study: Common household chemicals link to drop in child IQ

14 Dec

The goal of this society should be to raise healthy and happy children who will grow into concerned and involved adults who care about their fellow citizens and environment. Science Daily reported in Prenatal exposure to common household chemicals linked with substantial drop in child IQ:

Children exposed during pregnancy to elevated levels of two common chemicals found in the home–di-n-butyl phthalate (DnBP) and di-isobutyl phthalate (DiBP)–had an IQ score, on average, more than six points lower than children exposed at lower levels, according to researchers at Columbia University’s Mailman School of Public Health. The study is the first to report a link between prenatal exposure to phthalates and IQ in school-age children. Results appear online in the journal PLOS ONE.

DnBP and DiBP are found in a wide variety of consumer products, from dryer sheets to vinyl fabrics to personal care products like lipstick, hairspray, and nail polish, even some soaps. Since 2009, several phthalates have been banned from children’s toys and other childcare articles in the United States. However, no steps have been taken to protect the developing fetus by alerting pregnant women to potential exposures. In the U.S., phthalates are rarely listed as ingredients on products in which they are used.

Researchers followed 328 New York City women and their children from low-income communities. They assessed the women’s exposure to four phthalates–DnBP, DiBP, di-2-ethylhexyl phthalate, and diethyl phthalate–in the third trimester of pregnancy by measuring levels of the chemicals’ metabolites in urine. Children were given IQ tests at age 7.

Children of mothers exposed during pregnancy to the highest 25 percent of concentrations of DnBP and DiBP had IQs 6.6 and 7.6 points lower, respectively, than children of mothers exposed to the lowest 25 percent of concentrations after controlling for factors like maternal IQ, maternal education, and quality of the home environment that are known to influence child IQ scores. The association was also seen for specific aspects of IQ, such as perceptual reasoning, working memory, and processing speed. The researchers found no associations between the other two phthalates and child IQ.

The range of phthalate metabolite exposures measured in the mothers was not unusual: it was within what the Centers for Disease Control and Prevention observed in a national sample.
“Pregnant women across the United States are exposed to phthalates almost daily, many at levels similar to those that we found were associated with substantial reductions in the IQ of children,” says lead author Pam Factor-Litvak, PhD, associate professor of Epidemiology at the Mailman School.
“The magnitude of these IQ differences is troubling,” says senior author Robin Whyatt, DrPH, Professor of Environmental Health Sciences and deputy director of the Columbia Center for Children’s Environmental Health at the Mailman School. “A six- or seven-point decline in IQ may have substantial consequences for academic achievement and occupational potential.”

PSYBLOG lists common household items in 8 Household Items Newly Found to Lower Children’s IQ Significantly:

Avoiding phthalates
While it is impossible to avoid phthalates completely, they are found in these common products, amongst others:
• Hairspray.
• Plastic containers used for microwaving food.
• Lipstick.
• Air fresheners.
• Dryer sheets.
• Nail polish.
• Some soaps.
• Recycled plastics labelled 3,6 or 7.
http://www.spring.org.uk/2014/12/8-household-items-newly-found-to-lower-childrens-iq-significantly.php

Citation:

Prenatal exposure to common household chemicals linked with substantial drop in child IQ
Date: December 10, 2014

Source: Columbia University’s Mailman School of Public Health

Summary:
Children exposed during pregnancy to elevated levels of two common chemicals found in the home — di-n-butyl phthalate and di-isobutyl phthalate — had an IQ score, on average, more than six points lower than children exposed at lower levels, according to researchers. The study is the first to report a link between prenatal exposure to phthalates and IQ in school-age children. While avoiding all phthalates in the United States is for now impossible, the researchers recommend that pregnant women take steps to limit exposure by not microwaving food in plastics, avoiding scented products as much as possible, including air fresheners, and dryer sheets, and not using recyclable plastics labeled as 3, 6, or 7. http://www.sciencedaily.com/releases/2014/12/141210140823.htm
Persistent Associations between Maternal Prenatal Exposure to Phthalates on Child IQ at Age 7 Years
• Pam Factor-Litvak mail,
• Beverly Insel,
• Antonia M. Calafat,
• Xinhua Liu,
• Frederica Perera,
• Virginia A. Rauh,
• Robin M. Whyatt
• Published: December 10, 2014
• DOI: 10.1371/journal.pone.0114003

Abstract
Background
Prior research reports inverse associations between maternal prenatal urinary phthalate metabolite concentrations and mental and motor development in preschoolers. No study evaluated whether these associations persist into school age.
Methods
In a follow up of 328 inner-city mothers and their children, we measured prenatal urinary metabolites of di-n-butyl phthalate (DnBP), butylbenzyl phthalate (BBzP), di-isobutyl phthalate (DiBP), di-2-ethylhexyl phthalate and diethyl phthalate in late pregnancy. The Wechsler Intelligence Scale for Children, 4th edition was administered at child age 7 years and evaluates four areas of cognitive function associated with overall intelligence quotient (IQ).
Results
Child full-scale IQ was inversely associated with prenatal urinary metabolite concentrations of DnBP and DiBP: b = −2.69 (95% confidence interval [CI] = −4.33, −1.05) and b = −2.69 (95% CI = −4.22, −1.16) per log unit increase. Among children of mothers with the highest versus lowest quartile DnBP and DiBP metabolite concentrations, IQ was 6.7 (95% CI = 1.9, 11.4) and 7.6 (95% CI = 3.2, 12.1) points lower, respectively. Associations were unchanged after control for cognition at age 3 years. Significant inverse associations were also seen between maternal prenatal metabolite concentrations of DnBP and DiBP and child processing speed, perceptual reasoning and working memory; DiBP and child verbal comprehension; and BBzP and child perceptual reasoning.

Conclusion
Maternal prenatal urinary metabolite concentrations measured in late pregnancy of DnBP and DiBP are associated with deficits in children’s intellectual development at age 7 years. Because phthalate exposures are ubiquitous and concentrations seen here within the range previously observed among general populations, results are of public health significance. http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0114003

Saundra Young of CNN wrote about toxic chemicals in ‘Putting the next generation of brains in danger.’

According to Young there are several types of chemicals which pose a danger:

The best example of this, he said, is cosmetics and phthalates. Phthalates are a group of chemicals used in hundreds of products from cosmetics, perfume, hair spray, soap and shampoos to plastic and vinyl toys, shower curtains, miniblinds, food containers and plastic wrap.
You can also find them in plastic plumbing pipes, medical tubing and fluid bags, vinyl flooring and other building materials. They are used to soften and increase the flexibility of plastic and vinyl.
In Europe, cosmetics don’t contain phthalates, but here in the United States some do.
Phthalates previously were used in pacifiers, soft rattles and teethers. But in 1999, after a push from the U.S. Consumer Product Safety Commission, American companies stopped using them in those products.
“We certainly have the capability, it’s a matter of political will,” Landrigan said. “We have tried in this country over the last decade to pass chemical safety legislation but the chemical industry and their supporters have successfully beat back the effort.”
However, the Food and Drug Administration said two of the most common phthalates, — dibutylphthalate, or DBP, used as a plasticizer in products such as nail polishes to reduce cracking by making them less brittle, and dimethylphthalate, or DMP used in hairsprays — are now rarely used in this country.
Diethylphthalate, or DEP, used in fragrances, is the only phthalate still used in cosmetics, the FDA said.
“It’s not clear what effect, if any, phthalates have on human health,” according to the FDA’s website. “An expert panel convened from 1998 to 2000 by the National Toxicology Program (NTP), part of the National Institute for Environmental Safety and Health, concluded that reproductive risks from exposure to phthalates were minimal to negligible in most cases….” http://www.cnn.com/2014/02/14/health/chemicals-children-brains/

See, Helping to protect children from the harmful effects of chemicals http://www.who.int/ipcs/highlights/children_chemicals/en/

Children will have the most success in school, if they are ready to learn. Ready to learn includes proper nutrition for a healthy body and the optimum situation for children is a healthy family. Many of societies’ problems would be lessened if the goal was a healthy child in a healthy family.

Our goal as a society should be a healthy child in a healthy family who attends a healthy school in a healthy neighborhood. ©

Where information leads to Hope. © Dr. Wilda.com

Dr. Wilda says this about that ©

Blogs by Dr. Wilda:

COMMENTS FROM AN OLD FART©
http://drwildaoldfart.wordpress.com/

Dr. Wilda Reviews ©
http://drwildareviews.wordpress.com/

Dr. Wilda ©
https://drwilda.com/

For exclusive content: THE OLD BLACK FART
Subscribe at http://beta.tidbitts.com/dr-wilda-the-old-black-fart/the-old-black-fart