Tag Archives: Gender Disparity

University of Illinois and Princeton University study: Stereotypes that women are not as brilliant as men result in gender inequity in academia

15 Jan

Many girls and women who have the math and science aptitude for a science career don’t enter scientific fields. Cheryl B. Schrader wrote in the St Louis Post-Dispatch article, STEM education: Where the girls are not:

Compounding this issue, the gender gap in these fields is widening…
While the majority of U.S. college students today are female, they remain a minority in many science and engineering fields. If universities are to meet the future demands of our economy, we can’t leave half of the college-bound population on the sidelines.
How can we change that? The STEMconnector report offers some hints.
Female high school students who are interested in these fields often gravitate toward biology, chemistry, marine biology and science — areas often associated with a desire to make the world a better place. Women tend to be drawn to these service-oriented professions….http://www.stltoday.com/news/opinion/columns/stem-education-where-the-girls-are-not/article_ae33c7b7-6a7b-5011-8d2a-138bc1538357.html

See, STEM Connector http://store.stemconnector.org/Where-Are-the-STEM-Students_p_9.html

Stephanie Castillo reported in the Medical Daily article, Gender Inequality In Academia Stems From Assumption Women Aren’t As Brilliant As Men:

A new study published in the journal Science continues to support the idea gender inequality exists in academia.

According to researchers from the University of Illinois and Princeton University, women are underrepresented in academic fields, such as the sciences, the humanities, social sciences, and math, because of stereotypes. Namely, the idea is that women’s intellectual abilities are inferior to those of men. Cue the eye rolling.

The study surveyed more than 1,800 graduate students, post-doctoral researchers and faculty members across 30 academic disciplines, asking them the qualities required for success in their fields. When it came to the STEM fields (science, technology, engineering, and math), as well as the humanities and social sciences, women were underrepresented because of the premium practitioners put on brilliance.

“We’re not saying brilliance — or valuing brilliance — is a bad thing. And we’re not saying women are not brilliant or that being brilliant isn’t helpful to one’s academic career. Our data don’t address that,” Andrei Cimpian, lead study author and psychology professor at Illinois, explained in a press release. “What they suggest is that conveying to your students a belief that brilliance is required for success may have a differential effect on males and females that are looking to pursue careers in your field.”

Cimpian’s explanation held up after he and his team tested for three additional hypotheses regarding female underrepresentation: one, women avoid working long hours; two, it’s harder for women to break into these highly selective fields; and three, men simply outnumber women “in fields that require analytical, systematical reasoning.” Neither of these was able to predict women’s representation in academia as well as brilliance.

But, just because Cimpian’s study didn’t address the idea “women aren’t brilliant” or “being brilliant isn’t helpful” doesn’t mean it’s not a thing. Because if it were true no one is saying or making these assumptions, there would be more women in academia. Cimpian himself said there’s no convincing evidence men and women differ intellectually in ways that would be relevant to their success working in science — it’s mainly the perceived or presumed differences between women and men.

The idea women are “inferior” to men started somewhere, so where should we be looking in order to come up with the solution? One study published in the journal Life Science Education suggested the classroom…http://www.medicaldaily.com/gender-inequality-academia-stems-assumption-women-arent-brilliant-men-317984

Citation:

Science 16 January 2015:
Vol. 347 no. 6219 pp. 262-265
DOI: 10.1126/science.1261375

  • Report

Expectations of brilliance underlie gender distributions across academic disciplines

  1. Sarah-Jane Leslie1,*,,
  2. Andrei Cimpian2,*,,
  3. Meredith Meyer3,
  4. Edward Freeland4

+ Author Affiliations

  1. 1Department of Philosophy, Princeton University, Princeton, NJ 08544, USA.
  2. 2Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA.
  3. 3Department of Psychology, Otterbein University, Westerville, OH 43081, USA.
  4. 4Survey Research Center, Princeton University, Princeton, NJ 08544, USA.
  1. *These authors contributed equally to the work.

The gender imbalance in STEM subjects dominates current debates about women’s underrepresentation in academia. However, women are well represented at the Ph.D. level in some sciences and poorly represented in some humanities (e.g., in 2011, 54% of U.S. Ph.D.’s in molecular biology were women versus only 31% in philosophy). We hypothesize that, across the academic spectrum, women are underrepresented in fields whose practitioners believe that raw, innate talent is the main requirement for success, because women are stereotyped as not possessing such talent. This hypothesis extends to African Americans’ underrepresentation as well, as this group is subject to similar stereotypes. Results from a nationwide survey of academics support our hypothesis (termed the field-specific ability beliefs hypothesis) over three competing hypotheses.

  • Received for publication 17 September 2014.
  • Accepted for publication 25 November 2014.

Related Web Sites

Read the Full Text

The editors suggest the following Related Resources on Science sites

In Science Magazine

  • Perspective Social Science Gender inequality in science
    • Andrew M. Penner

Science 16 January 2015: 234-235.

http://www.sciencemag.org/content/347/6219/262.short

Here is the press release from the University of Illinois:

Public Release: 15-Jan-2015 Study supports new explanation of gender gaps in academia

University of Illinois at Urbana-Champaign

CHAMPAIGN, Ill. — It isn’t that women don’t want to work long hours or can’t compete in highly selective fields, and it isn’t that they are less analytical than men, researchers report in a study of gender gaps in academia. It appears instead that women are underrepresented in academic fields whose practitioners put a lot of emphasis on the importance of being brilliant – a quality many people assume women lack.

The new findings are reported in the journal Science.

The research, led by University of Illinois psychology professor Andrei Cimpian and Princeton University philosophy professor Sarah-Jane Leslie , focused on a broad swath of academic disciplines, including those in the sciences, the humanities, social sciences and math.

The researchers focused on the culture of different fields, reasoning that stereotypes of women’s inferior intellectual abilities might help explain why women are underrepresented in fields – such as physics or philosophy – that idolize geniuses.

The team surveyed more than 1,800 graduate students, post-doctoral researchers and faculty members in 30 academic disciplines and, among other things, asked them what qualities were required for success in their fields. Across the board, in the sciences, technology, engineering and math (the so-called STEM fields), as well as in the humanities and social sciences, women were found to be underrepresented in those disciplines whose practitioners put a premium on brilliance.

“We’re not saying brilliance – or valuing brilliance – is a bad thing,” Cimpian said. “And we’re not saying women are not brilliant or that being brilliant isn’t helpful to one’s academic career. Our data don’t address that. What they suggest is that conveying to your students a belief that brilliance is required for success may have a differential effect on males and females that are looking to pursue careers in your field.”

The team also tested three other hypotheses that might help explain women’s underrepresentation in some fields: one, that women avoid careers that require them to work long hours; two, that women are less able than men to get into highly selective fields; and three, that women are outnumbered by men in fields that require analytical, systematical reasoning.

“We found that none of these three alternative hypotheses was able to predict women’s representation across the academic spectrum,” Leslie said. “A strong emphasis on brilliance among practitioners of particular fields was the best predictor of women’s underrepresentation in those fields.”

The researchers are still investigating whether women are actively avoiding fields that focus on cultivating brilliant individuals, or if practitioners in those fields are discriminating against women based on their beliefs about women’s aptitudes. A combination of the two is certainly plausible, Cimpian said.

“There is no convincing evidence in the literature that men and women differ intellectually in ways that would be relevant to their success across the entire range of fields we surveyed,” Cimpian said. “So it is most likely that female underrepresentation is not the result of actual differences in intellectual ability – but rather the result of perceived or presumed differences between women and men.”

###

Editor’s notes:

To reach Andrei Cimpian, call 217-333-0852; email acimpian@illinois.edu.

The paper, “Expectations of brilliance underlie gender distributions across academic disciplines” is available to members of the media from scipak@aaas.org.

How classes are taught and how girls and woman are encouraged makes a huge difference in the fields women choose for their education and work.

Phoebe Parke of CNN wrote in the article, Ask the experts: How do we get girls into STEM?

  1. “The toys and games that young girls play with mold their educational and career interests; they create dreams of future careers.” says Andrea Guendelman, co-founder of Developher

  2. “Introduce girls early to role models of other women In STEM” suggests Regina Agyare, founder of Soronko Solutions….

  3. “It’s important to engage girls in STEM at an early age and keep them interested.” adds Patty L. Fagin, PhD, Head of School at Stuart Country Day School of the Sacred Heart.

  4. “There’s no magic recipe for getting girls into STEM, but we know early and positive exposure makes an impact.” Karen Horting, CEO and Executive Director at the Society of Women Engineers told CNN….

  5. “Start them young.” is Michelle Sun, Founder and CEO of First Code Academy‘s advice….

  6. “I believe one on one mentoring programs with accomplished female STEM professionals will help bring girls in to the STEM field.” says Adeola Shasanya who recently co-founded Afro-Tech Girls and works at the Lagos State Electricity Board as an Electrical Engineering and Renewables Consultant….

  7. Haiyan Zhang, Innovation Director at Lift London, Microsoft Studios believes confidence is key; “Insatiable curiosity and the self confidence to make change in the world — two qualities that are key to instil in the female innovators of the future….

  8. “Women are the future of technology and today’s technology is fun and cool.” says Weili Dai, President and Co-founder of Marvell Technology Group

  9. “Time and again, I hear from women who chose their STEM career because they were inspired by a successful woman who proved it could be done.” adds Suw Charman-Anderson, Founder of Ada Lovelace Day….

  10. “To get more girls in STEM let’s go for collective action…” says Julie Kantor, Chief Partnership Officer at Million Women Mentors

http://www.cnn.com/2014/10/27/world/europe/how-to-get-girls/

It is going to take a variety of strategies which include mentoring, exposure to what is now considered nontraditional fields and encouragement of girls and women not only entering nontraditional fields, but staying the course.

Related:

Study: Gender behavior differences lead to higher grades for girls

https://drwilda.com/2013/01/07/study-gender-behavior-differences-lead-to-higher-grades-for-girls/

Girls and math phobia

https://drwilda.com/2012/01/20/girls-and-math-phobia/

University of Missouri study: Counting ability predicts future math ability of preschoolers

https://drwilda.com/2012/11/15/university-of-missouri-study-counting-ability-predicts-future-math-ability-of-preschoolers/

Is an individualized program more effective in math learning?

https://drwilda.com/2012/10/10/is-an-individualized-program-more-effective-in-math-learning/

Where information leads to Hope. © Dr. Wilda.com

Dr. Wilda says this about that ©

Blogs by Dr. Wilda:

COMMENTS FROM AN OLD FART©

http://drwildaoldfart.wordpress.com/

Dr. Wilda Reviews ©

http://drwildareviews.wordpress.com/

Dr. Wilda ©

https://drwilda.com/

For exclusive content: THE OLD BLACK FART
Subscribe at http://beta.tidbitts.com/dr-wilda-the-old-black-fart/the-old-black-fart

American Institutes for Research study: Gender imbalances among stem PhDs

1 Oct

Many girls and women who have the math and science aptitude for a science career don’t enter scientific fields. Cheryl B. Schrader writes in the St Louis Post-Dispatch article, STEM education: Where the girls are not:

Compounding this issue, the gender gap in these fields is widening…
While the majority of U.S. college students today are female, they remain a minority in many science and engineering fields. If universities are to meet the future demands of our economy, we can’t leave half of the college-bound population on the sidelines.
How can we change that? The STEMconnector report offers some hints.
Female high school students who are interested in these fields often gravitate toward biology, chemistry, marine biology and science — areas often associated with a desire to make the world a better place. Women tend to be drawn to these service-oriented professions….http://www.stltoday.com/news/opinion/columns/stem-education-where-the-girls-are-not/article_ae33c7b7-6a7b-5011-8d2a-138bc1538357.html

See, STEM Connector http://store.stemconnector.org/Where-Are-the-STEM-Students_p_9.html

The Chronicle of Higher Education reported in the article, Report Examines Fields With Highest Gender Imbalances Among Ph.D.’s:

The researchers examined gender balances in 135 academic fields: 55 in the so-called STEM disciplines of science, technology, engineering, and mathematics, and 80 non-STEM fields. They determined overrepresentation by comparing whether the gender breakdown of doctoral-degree recipients in a particular field was more skewed than the gender makeup of bachelor’s-degree recipients in that field.
The paper says that the STEM-related fields were slightly less likely than other fields to have an underrepresentation of women with Ph.D.’s.
Among the 55 STEM-related fields, men were overrepresented in 74.5 percent and women were overrepresented in 25.5 percent. Among the other 80 fields, men were overrepresented in 77.5 percent and women were overrepresented in 22.5 percent.
“There is a considerable loss of female candidates between the bachelor’s and doctoral degrees,” Mr. Gillen said in a news release about the findings. “If we want gender equity at the doctoral level, efforts need to be made earlier in students’ academic pathways and sustained throughout their doctoral education.”
Following are the top five fields in which men are overrepresented among doctoral-degree recipients, according to the report:
1. Communication Disorders Sciences and Services
2. Missions/Missionary Studies and Missiology
3. Law
4. Family and Consumer Sciences/Human Sciences, General
5. Teacher Education and Professional Development, Specific Levels and Methods
Following are the top five fields in which women are overrepresented among doctoral-degree recipients, according to the report:
1. Forestry (Non-STEM)
2. Slavic, Baltic, and Albanian Languages, Literatures, and Linguistics
3. Forestry (STEM)
4. Fine and Studio Arts
5. Information Science/Studies
Bottom Line: Men are overrepresented in about three-quarters of the fields studied, while women are overrepresented in about one-quarter. Out of the 135 fields analyzed, women were slightly less likely to be underrepresented in STEM fields. http://chronicle.com/blogs/ticker/report-examines-fields-with-highest-gender-imbalances-among-ph-d-s/87109?cid=pm&utm_source=pm&utm_medium=en

Here is the article brief:
Moi believes that good and gifted teachers come in all colors, shapes, sizes, and both genders. Teachers are often role models and mentors which is why a diverse teaching profession is desirable.

30 Sep 2014
Brief
Exploring Gender Imbalance Among STEM Doctoral Degree Recipients
Andrew Gillen
Courtney Tanenbaum
Gender imbalance in doctoral education in science, technology, engineering, and mathematics (STEM) fields raises important questions about the extent to which women experience differential access, encouragement, and opportunity for academic advancement. Through primary school and middle school, girls and boys typically indicate an equal interest and demonstrate equivalent levels of achievement on several science and mathematical indicators, but girls’ interest in pursuing scientific degrees and careers wanes by high school.
Accurately identifying the nature of the imbalance is an important first step in addressing it. The alternate method used in this brief to account for the gender breakdown among undergraduate degree recipients provides a more reliable gauge of gender imbalance at the doctoral level.
Key results from using this alternate method are as follows:
• ——Men are overrepresented in about three quarters of academic fields and women are overrepresented in about one quarter of academic fields.
• STEM fields are slightly more gender-balanced than non-STEM fields.
• Among STEM fields, and often in contrast to conventional wisdom, biological and biomedical sciences and the physical sciences show the greatest overrepresentation of males and engineering was roughly gender-balanced.
This brief is one in a series produced by AIR to promote research, policy, and practice related to broadening the participation of traditionally underrepresented groups in STEM doctoral education and the workforce.

Moi believes that good and gifted teachers come in all colors, shapes, sizes, and both genders. Teachers are often role models and mentors which is why a diverse teaching profession is desirable.

Related:

Girls and math phobia https://drwilda.com/2012/01/20/girls-and-math-phobia/

Study: Gender behavior differences lead to higher grades for girls https://drwilda.com/2013/01/07/study-gender-behavior-differences-lead-to-higher-grades-for-girls/

University of Missouri study: Counting ability predicts future math ability of preschoolers https://drwilda.com/2012/11/15/university-of-missouri-study-counting-ability-predicts-future-math-ability-of-preschoolers/

Is an individualized program more effective in math learning?
https://drwilda.com/2012/10/10/is-an-individualized-program-more-effective-in-math-learning

Where information leads to Hope. © Dr. Wilda.com

Dr. Wilda says this about that ©

Blogs by Dr. Wilda:

COMMENTS FROM AN OLD FART© http://drwildaoldfart.wordpress.com/

Dr. Wilda Reviews © http://drwildareviews.wordpress.com/

Dr. Wilda © https://drwilda.com/
For exclusive content: THE OLD BLACK FART
Subscribe at http://beta.tidbitts.com/dr-wilda-the-old-black-fart/the-old-black-fart

Reducing gender differences in STEM education

21 Apr

Many girls and women who have the math and science aptitude for a science career don’t enter scientific fields. Cheryl B. Schrader writes in the St Louis Post-Dispatch article, STEM education: Where the girls are not:

Compounding this issue, the gender gap in these fields is widening.

The Jan. 30 report from STEMconnector and My College Options — titled “Where Are the STEM Students?” — underscores the importance of these fields for our nation’s future economic well-being. It also presents a challenge for all of us in education, from kindergarten through college, to increase interest levels in science, technology, engineering and mathematics — the so-called STEM fields — for all types of students.

While the majority of U.S. college students today are female, they remain a minority in many science and engineering fields. If universities are to meet the future demands of our economy, we can’t leave half of the college-bound population on the sidelines.

How can we change that? The STEMconnector report offers some hints.

Female high school students who are interested in these fields often gravitate toward biology, chemistry, marine biology and science — areas often associated with a desire to make the world a better place. Women tend to be drawn to these service-oriented professions.

But thanks to the rise of cloud computing, information systems and the app economy, 71 percent of the new STEM jobs in 2018 are projected to be in the computing fields. Getting girls interested in these fields at a young age will be critical if we are to meet the coming demand for talented and well-educated computer scientists, computer engineers and game designers.

With this in mind, it’s important to convey to young women computing’s role in serving society. We should show a young woman how a computer science degree could equip her to design a new app to diagnose illness. That may appeal more to her desire to help others than, say, showing her how to write code for yet another online game.

Programs like Project Lead the Way, which introduces middle school and high school students to engineering and science, help students learn more about these fields at an early age. In Missouri, 165 high schools and middle schools are using PLTW’s engineering and biomedical sciences materials to generate more interest in those areas. http://www.stltoday.com/news/opinion/columns/stem-education-where-the-girls-are-not/article_ae33c7b7-6a7b-5011-8d2a-138bc1538357.html

See, STEM Connector http://store.stemconnector.org/Where-Are-the-STEM-Students_p_9.html

Jonathan Olsen and Sarah Gross, teachers at High Technology High School in Lincroft, New Jersey guest post in the Scientific American article, To Attract More Girls to STEM, Bring More Storytelling to Science:

Perhaps girls with high verbal scores choose careers other than STEM because their passion hasn’t been kindled in those classes. We know it is not the fault of their teachers but a problem of process.  For many schools, arts and sciences are rarely ever integrated.  Teachers are kept apart with little time to collaborate.

If integration does happen, it is usually the humanities teacher looking to include aspects of STEM in their courses.  The recent adoption of the Common Core Standards by forty-five states calls for more integration between subjects.  However, ask most humanities teachers and they will tell you that they are being told to integrate STEM content into their classes, removing literature for nonfiction, rather than being given the opportunity to collaborate with their STEM counterparts.  Integration is wonderfully effective and certainly the future of education but it is a two-way street.  We think schools should use reciprocal integration between the arts and sciences to capture the imagination of these top female students.

How many engineering teachers include a fiction book like Kurt Vonnegut’s Player Piano in their syllabi?  Do many math teachers analyze the intricacies of M. C. Escher’s artwork with their students or read Behind the Beautiful Forevers by Katherine Boo? How many science teachers read aloud the poetic observations of Dr. David George Haskell?  Do many biology teachers share the story of the HeLa cells?  We think ideas like these should be a part of all STEM curricula.  And experts agree. The NextGeneration Science Standards, released for public discussion last week, ask teachers to show students how insights from many disciplines fit together into a coherent picture of the world.  And we believe that incorporating more storytelling into science can help do this.

Research has shown that storytelling activates the brain beyond mere word recognition.  In 2006, researchers in Spain discovered that stories stimulate the brain and even change how we act in life. Last year, a team of researchers from Emory University reported in Brain & Language that similes and metaphors can activate sensory portions of the brain, and the Laboratory of Language Dynamics in France discovered that action words can stimulate the motor cortex.  So if, as the recent study in Psychological Science shows, female students with high ability in both math and verbal areas tend to steer away from STEM careers, maybe it’s time to bring more of those verbal skills into the STEM classes for the benefit of these students. http://blogs.scientificamerican.com/budding-scientist/2013/04/16/to-attract-more-girls-to-stem-bring-storytelling-to-science/?WT.mc_id=SA_emailfriend

Here is the press release from the University of Pittsburgh:

March 19, 2013

Women With Both High Math and Verbal Ability Appear Less Likely to Choose Science Careers Because Their Dual Skills Confer More Career Options

Pitt-Michigan study finds that more women than men have combination of high math and high verbal skills, recommends new focus on tapping potential of women with that combination for careers in science, technology, engineering, and mathematics (STEM)

Study also finds that women with high math skills and only moderate verbal ability are the ones who appear more likely to choose STEM careers

PITTSBURGH—There has been ongoing public discussion about the need to educate and recruit more young Americans for careers in science, technology, engineering, and mathematics (STEM).

Now a just-published study by the University of Pittsburgh and the University of Michigan offers one potential solution to this perennial problem: more concentrated efforts to encourage women who already possess the necessary skills. 

It turns out that there is a pre-existing pool of women with both high math and high verbal ability; it’s just that they seem to be more likely to choose careers outside of science because their combination of skills provides them with more career options, according to the Pitt study, published March 19 in Psychological Science. 

Principal Investigator and Pitt Assistant Professor of Psychology in Education Ming-Te Wang and collaborators at the University of Michigan found that the mean SAT math score of a group of men and women with the combination of high math and high verbal scores was 720, while the mean SAT verbal score was 696, both out of a possible 800. This group of math and verbal high achievers included a significantly higher proportion of women (63 percent) than men (37 percent).

Additionally, the researchers found that women in the group of men and women with high math scores and only moderate verbal scores were the ones more likely to choose STEM careers. The mean math SAT score for this group was 721, while the mean verbal SAT score was 655. 

Our study suggests that it’s not lack of ability or difference in ability that orients females to pursue non-STEM careers but the fact that they can consider a wider range of occupations because of their combination of excellent math and verbal skills,” said Wang. “This highlights the need for educators and policy makers to shift the focus away from trying to strengthen girls’ STEM-related abilities and instead tap the potential of these girls who are highly skilled in both the math and verbal domains to go into STEM fields.”

Wang and his collaborators examined data on 1,490 college-bound U.S. students, with the information drawn from the University of Michigan’s Longitudinal Study of American Youth. The subjects in the Michigan Longitudinal Study were surveyed by Michigan in two waves: once in the 12th grade (1992) and again at age 33 (2007). The subjects completed telephone interviews, which required them to update their educational and occupational histories from high school through the time of the second-wave survey. Only subjects who participated in both waves were included in Wang’s study; all had received a four-year college degree by the time of the second-wave survey. The participants were 49 percent female and 51 percent male.  

The survey evaluated such factors as participants’ SAT scores, family needs, whether they liked working with people or things, their devotion to a career, and, ultimately, the occupations they chose by age 33. 

The researchers found, from their analysis of the Michigan Longitudinal Study data, that men and women who felt more successful in mathematics than in verbal-related disciplines were more likely to work in STEM fields by the time they had reached the age of 33. Mathematics, said Wang, played a role in these individuals’ identities because they excelled within the discipline, driving them to pursue STEM-related jobs. 

We need to make sure girls and women—especially those with the combination of high math and high verbal skills—are well informed regarding the full diversity of options available in STEM careers,” said Wang. “We want them to see the value in these disciplines so they won’t shy away from science- or math-related careers because of lack of information, misinformation, or stereotypes.”

Wang’s coauthors include the University of Michigan’s Jacquelynne Eccles and Sarah Kenny. 

The paper is titled “Not Lack of Ability but More Choice: Individual and Gender Differences in Choice of Careers in Science, Technology, Engineering, and Mathematics.” 

A PDF of the study is available upon request. 

###

3/19/13/mab/cjhm

In Study: Elementary school teachers have an impact on girls math learning moi wrote:

Moi has written about the importance of motivation in student learning. In Research papers: Student Motivation: An Overlooked Piece of School Reform, moi wrote:

Moi often says education is a partnership between the student, the teacher(s) and parent(s). All parties in the partnership must share the load. The student has to arrive at school ready to learn. The parent has to set boundaries, encourage, and provide support. Teachers must be knowledgeable in their subject area and proficient in transmitting that knowledge to students. All must participate and fulfill their role in the education process. A series of papers about student motivation by the Center on Education Policy (CEP) follows the Council on Foreign Relations report by Condoleezza Rice and Joel Klein.                                                                                      https://drwilda.com/2012/05/30/research-papers-student-motivation-an-overlooked-piece-of-school-reform/

https://drwilda.com/2013/01/31/study-elementary-school-teachers-have-an-impact-on-girls-math-learning/

Related:

Girls and math phobia                                                                       https://drwilda.com/2012/01/20/girls-and-math-phobia/

Study: Gender behavior differences lead to higher grades for girls                                                                                  https://drwilda.com/2013/01/07/study-gender-behavior-differences-lead-to-higher-grades-for-girls/

University of Missouri study: Counting ability predicts future math ability of preschoolers                                                                 https://drwilda.com/2012/11/15/university-of-missouri-study-counting-ability-predicts-future-math-ability-of-preschoolers/

Is an individualized program more effective in math learning? https://drwilda.com/2012/10/10/is-an-individualized-program-more-effective-in-math-learning/

Where information leads to Hope. ©                  Dr. Wilda.com

Dr. Wilda says this about that ©

Blogs by Dr. Wilda:

COMMENTS FROM AN OLD FART©                      http://drwildaoldfart.wordpress.com/

Dr. Wilda Reviews ©                                             http://drwildareviews.wordpress.com/

Dr. Wilda ©                                                                                                https://drwilda.com/

Study: The plight of African-American boys in Oakland, California

27 May

Absenteeism is a huge problem for many children who are not successful in school. In School Absenteeism: Absent from the classroom leads to absence from participation in this society, moi said:

Education is a partnership between the student, the teacher(s) and parent(s). All parties in the partnership must share the load. The student has to arrive at school ready to learn. The parent has to set boundaries, encourage, and provide support. Teachers must be knowledgeable in their subject area and proficient in transmitting that knowledge to students. All must participate and fulfill their role in the education process.

https://drwilda.wordpress.com/2012/02/01/school-absenteeism-absent-from-the-classroom-leads-to-absence-from-participation-in-this-society/

Katy Murphy of the Oakland Tribune writes in the article, Report reveals challenges facing African American boys in Oakland school:

– A series of detailed reports released Tuesday by the Urban Strategies Council revealed some stark statistics on how black boys are faring in the Oakland school district and in some of its schools in particular.

After analyzing rates of chronic absenteeism, out-of-school suspension, grade-level retention and standardized test scores from 2010-11, researchers concluded that as early as elementary school, barely more than half of the district’s black boys were solidly on track to earn a high school diploma.

By middle school, using grades instead of test scores, that estimate had dropped to 33 percent.

Urban Strategies CEO Junious Williams said he hoped the analysis — which also includes schools with favorable statistics — will lead to real changes in the experience of black youths in the city’s public schools.

“People have considered these to be so intractable, the problems of inequitable outcomes, that we’ve all kind of gotten a free ticket on that one,” Williams said.

The disproportionately poor outcomes of Oakland’s African-American students — and in particular, its boys — has been a long-standing challenge in the school district. Superintendent Tony Smith in 2010 used private funding to create a small office, African American Male Achievement, to address them. The reports, produced in partnership with the Oakland school district, underscored the degree of the challenge.

One report found that 20 percent of Oakland’s black male students missed at least 10 percent of the school year, compared to 12 percent of all students. Another found that 33 percent of the district’s African-American middle school boys were suspended from school at least once in 2010-11.

http://www.insidebayarea.com/top-stories/ci_20681428/report-challenges-face-african-american-boys-oakland-schools?source=rss

Many urban areas are facing the problem of making sure African-American boys finish school.

Here are the demographics of Oakland, CA:

Race
One race

379573

95.02%

White

125013

31.29%

Black or African American

142460

35.66%

American Indian and Alaska Native

2655

0.66%

Asian

60851

15.23%

Asian indian

1753

0.44%

Chinese

31834

7.97%

Filipino

6407

1.6%

Japanese

2128

0.53%

Korean

1780

0.45%

Vietnamese

8657

2.17%

Other Asian

8292

2.08%

Native Hawaiian and Other Pacific Islander

2002

0.5%

Native Hawaiian

187

0.05%

Guamanian or Chamorro

115

0.03%

Samoan

363

0.09%

Other Pacific Islander

1337

0.33%

Some other race

46592

11.66%

Two or more races

19911

4.98%

Hispanic or Latino and race
Total Population

399484

100.00%

Hispanic or Latino(of any race)

87467

21.89%

Mexican

65094

16.29%

Puerto Rican

2325

0.58%

Cuban

581

0.15%

Other Hispanic or Latino

19467

4.87%

Not Hispanic or Latino

312017

78.11%

http://oaklandca.areaconnect.com/statistics.htm

Urban Strategies has information at their site about strategies for achievement:

The African American Male Achievement Initiative focuses on seven key goals that reflect the massive disparities faced by young Black males in Oakland. For an analysis of why these goals matter to our students read this post.

1. ACHIEVEMENT GAP

Goal statement: The disparity data for African American males in the city of Oakland will show a significant reduction in the gap between them and their White male peers.

Baseline Measures:

28% of African American male students were proficient or higher on the English Language Arts CST in 2009-10, compared to 78% of White male students (a 50 percentage-point gap).

30% of African American males were proficient or higher on the Math CST in 2009-10, compared to 76% of White males (a 46 percentage-point gap).

Proposed Targets:

By the end of the 2014-2015 school year, 90% of African American males are proficient or higher on the English Language Arts CST.

By the end of the 2014-2015 school year, 90% of African American male are proficient or higher on the Math CST.

By the end of the 2014-15 school year, the gap between African American and White males has been eliminated.

2. GRADUATION

Goal statement: By the end of the 2014-2015 school year, the graduation rate for African American males will be double what is it in June 2010.

Baseline Measure:

In June 2009, the graduation rate for African American males was 49%. The graduation rate equals the number of graduates divided by graduates plus dropouts in grades 9-12 (National Center for Education Statistics formula.)

Proposed Target:

By the end of the 2014-2015 school year, the graduation rate for African American males will be 98%. The full alignment of OUSD graduation requirements with the A-G standards for the class of 2014-15 is likely to make it more difficult to reach this already ambitious target.

3. LITERACY

Goal statement: By the end of the 2014-2015 school year, the gap in fourth-grade literacy between African Ameican boys and others will not exist.

Baseline Measure:

In the 2009-10 school year, 42% of African American male 4th graders were proficient or higher on the English Language Arts CST, compared to 55% of OUSD 4th graders overall and 80% of White male students (gaps of 13 and 38 percentage points, respectively).

Proposed Target:

By the end of the 2014-2015 school year, 90% of African American male 4th graders are proficient or higher on English Language Arts CST.

By the end of the 2014-15 school year, the gap between African American male 4th graders and OUSD 4th graders overall and between African American males and White males has been eliminated.

4. SUSPENSION

Goal statement: Suspension rates of African American males will not show any significant disproportion.

Baseline Measure:

In the 2009-10 school year, 18% of African American male students were suspended once or more, compared to 8% of students district wide and 3% of White male students.

Proposed Target:

By the end of the 2014-2015 school year, no more than 5% of African American male students will be suspended one or more times, assuming an overall district-wide goal of no more than 3% of students suspended once or more.

5. ATTENDANCE

Goal Statement: Chronic absenteeism (absence for 10% or more of school days) will be reduced by 75% for African American males.

Baseline Measure:

23% of African American male were chronically absent in 2009-10.

Proposed Target:

By the end of the 2014-2015 school year, no more than 6% of African American male will be chronically absent.

6. MIDDLE SCHOOL HOLDING POWER

Goal Statement: By the end of the 2014-2015 school year, middle school academic performance of African American males will be on par for district averages for GPA, community services and school holding power.

Baseline Measures:

In 2010-11, 45% of African American boys in grades six, seven, and eight did not display any warning signs of risk for high school dropout (i.e. they had passed Math and English, attended more than 90% of school days, had not been suspended, and had not been held back).

On the 2009-10 California Healthy Kids Survey, 39% of African American male 7th graders reported high levels of school protective factors. The percentages of African American males reporting high levels of each protective factor at school were as follows: 35% reported high levels of caring adults, 64% reported high levels of high expectations by adults, and 18% reported high levels of meaningful participation.

Proposed Target:

By the end of the 2014-15 school year, 90% of African American boys in grades six, seven, and eight will not display any early warning signs of high school dropout risk.

By the end of the 2014-15 school year, 75% of African American boys will report high levels of protective factors at school, and high levels of each protective factor (caring adults, high expectations by adults, and meaningful participation).

7. JUVENILE DETENTION (INCARCERATION)

Goal Statement: Incarceration rates for African American male youth will decrease by 50%.

Baseline Measure:

In 2009, 16.2% of African American males ages 10-17 in Oakland were detained by the Alameda County Probation Department (903 youth). Detention may be pre- or post-adjudication and includes: Juvenile Hall, Camp Sweeney, secure facility (out of county), non-secure facility (in county), Santa Rita Holding (awaiting transfer to adult prison).

Proposed Target:

By 2015, no more than 8% of African American males ages 10-17 in Oakland will be detained by the Alameda County Probation Department.

The initial goals are explained in more depth in this report. Historical data and current progress toward goals are detailed in this PowerPoint presentation. http://www.urbanstrategies.org/aamai/

These strategies may be applicable to other cities.

Related:

Study: When teachers overcompensate for prejudice https://drwilda.wordpress.com/2012/05/10/study-when-teachers-overcompensate-for-prejudice/

We give up as a society: Jailing parents because kids are truant                                                                https://drwilda.wordpress.com/2011/12/18/we-give-up-as-a-society-jailing-parents-because-kids-are-truant/

Who says Black children can’t learn? Some schools get it https://drwilda.wordpress.com/2012/03/22/who-says-black-children-cant-learn-some-schools-gets-it/

ilda says this about that ©

Girls and math phobia

20 Jan

Many students have difficulty with math. Sarah D. Sparks reported in the Education Week article, Study Helps Pinpont Math Disability

Burgeoning research into students’ difficulties with mathematics is starting to tease out cognitive differences between students who sometimes struggle with math and those who have dyscalculia, a severe, persistent learning disability in math.

A new, decade-long longitudinal study by researchers at the Kennedy Krieger Institute in Baltimore, published Friday in the journal Child Development, finds that 9th-graders considered dyscalculic—those who performed in the bottom 10 percent of math ability on multiple tests—had substantially lower ability to grasp and compare basic number quantities than average students or even other struggling math students….

There is a persistent myth that girls have difficulty with math because of self-esteem issues regarding the study of math.

The University of Missouri is reporting about a new study which examines past research regrading women and math. Here is an excerpt from the press release:

A University of Missouri researcher and his colleague have conducted a review that casts doubt on the accuracy of a popular theory that attempted to explain why there are more men than women in top levels of mathematic fields. The researchers found that numerous studies claiming that the stereotype, “men are better at math” – believed to undermine women’s math performance – had major methodological flaws, utilized improper statistical techniques, and many studies had no scientific evidence of this stereotype.

This theory, called stereotype threat, was first published in 1999 in the Journal of Experimental Social Psychology. Essentially, the theory is that due to the stereotype that women are worse than men in math skills, females develop a poor self-image in this area, which leads to mathematics underachievement.

The stereotype theory really was adopted by psychologists and policy makers around the world as the final word, with the idea that eliminating the stereotype could eliminate the gender gap,” said David Geary, Curators Professor of Psychological Sciences in the MU College of Arts and Science. “However, even with many programs established to address the issue, the problem continued. We now believe the wrong problem is being addressed.”

In the study, Geary and Gijsbert Stoet, from the University of Leeds in the United Kingdom, examined 20 influential replications of the original stereotype theory study. The researchers found that many subsequent studies had serious scientific flaws, including a lack of a male control group and improperly applied statistical techniques….

The researchers believe that basing interventions on the stereotype threat is actually doing more harm than good, as vital resources are being dedicated to a problem that does not exist.

These findings really irritate me, as a psychologist, because this is a science where we are really trying to discover what the issues are,” Geary said. “The fact is there are still a disproportionate number of men in top levels of science, technology, engineering and mathematics. We need more women to succeed in these fields for our economy and for our future.”

See, Math Gender Gap Not Result of Girls’ Low Self-Esteem, Researchers Say http://www.huffingtonpost.com/2012/01/18/gender-gap-in-math_n_1214517.html?ref=email_share

Other studies have looked at the influence of gender on math performance.

Science Daily reported in the March 14, 2011 article, Gender Stereotypes About Math Develop As Early As the Second Grade

Children express the stereotype that mathematics is for boys, not for girls, as early as second grade, according to a new study by University of Washington researchers. And the children applied the stereotype to themselves: boys identified themselves with math whereas girls did not.

The “math is for boys” stereotype has been used as part of the explanation for why so few women pursue science, mathematics and engineering careers. The cultural stereotype may nudge girls to think that “math is not for me,” which can affect what activities they engage in and their career aspirations.

The new study, published in the March/April issue of Child Development, suggests that, for girls, lack of interest in mathematics may come from culturally-communicated messages about math being more appropriate for boys than for girls, the researchers said.

Here is the study citation:

Dario Cvencek, Andrew N. Meltzoff, Anthony G. Greenwald. Math-Gender Stereotypes in Elementary School Children. Child Development, 2011; DOI: 10.1111/j.1467-8624.2010.01529.x

John ChildUp has an excellent synopsis of the math study, Math Gender Stereotypes Start As Early As Second Grade at his ChildUp blog:

Some sobering news for parental foes of sex stereotypes: A new study reinforces the devastating impact stereotypes can have on girls when it comes to math.

Little boys may love their trains and toys, but as early as second grade they’re already showing prowess on the mathematical front, sending a subliminal message to their female classmates about expectations for math test scores and even potential career paths, according to a new study, “Today” reports.

Researchers at the Institute for Learning & Brain Sciences at the University of Washington studied 247 American children between the ages of 6 and 10 and found that second grade boys identified with math more strongly than girls. The study was published in Wiley’s Child Development.

See, U.S. Teens Trail Peers Around World on Math-Science Test http://www.washingtonpost.com/wp-dyn/content/article/2007/12/04/AR2007120400730.html

It is important both for an individual student and the national competitiveness to have trained teachers and curriculum to advance the math education of all populations of students.

Not everything that counts can be counted. Not everything that can be counted counts.

– Albert Einstein

Contact information:

The study, “Can stereotype threat explain the sex gap in mathematics performance and achievement?” will be published in the journal Review of General Psychology.

Story Contact:
Steven Adams, AdamsST@missouri.edu, 573 882-8353

 

Dr. Wilda says this about that ©

 

Boys are different from girls despite what the culture is trying to say

2 Nov

Joan Gausted of the University of Oregon has an excellent article in Eric Digest 78, School Discipline

School discipline has two main goals: (1) ensure the safety of staff and students, and (2) create an environment conducive to learning. Serious student misconduct involving violent or criminal behavior defeats these goals and often makes headlines in the process. However, the commonest discipline problems involve noncriminal student behavior (Moles 1989).

Quite often, children who are disciplined tend to be boys and more often than not, boys of color. The issue for schools is how to maintain order, yet deal with noncriminal student behavior and keep children in school.

Alan Schwartz has a provocative article in the New York Times about a longitudinal study of discipline conducted in Texas. In School Discipline Study Raises Fresh Questions  Schwartz reports about the Texas study conducted under the auspices of the Council of State Governments. Martha Plotkin reports at the Council of State Governments site in the article, Out of Class Into Court Discretion in School Discipline has Big Impacts, Groundbreaking CSG Study Finds:

The numbers are startling.

Nearly 60 percent of students in Texas received at least one disciplinary action—including in-school suspensions ranging from a single class period to several days, with no cap on how many suspensions they can receive in a school year;

More than 30 percent had out-of-school suspensions of up to three days, with no cap on the number in a year;

About 15 percent were sent to Disciplinary Alternative Education Programs for an average of 27 days;

Approximately 8 percent were placed in Juvenile Justice Alternative Education Programs, averaging 73 days.

Those are some of the findings from a recent report, Breaking Schools’ Rules: A Statewide Study of How School Discipline Relates to Students’ Success and Juvenile Justice Involvement. The study, released July 19, was a partnership between The Council of State Governments Justice Center and the Public Policy Research Institute at Texas A&M….
Students who were repeatedly disciplined often experienced poor outcomes at particularly high rates. The Texas study found that 15 percent of Texas students had 11 or more disciplinary violations between seventh and 12th grades; about half of those frequent violators had subsequent contact with the juvenile justice system. Repeated suspensions and expulsions also predicted poor academic outcomes. Only 40 percent of students disciplined 11 times or more graduated from high school during the study period, and 31 percent of students disciplined one or more times repeated their grade at least once, compared with 5 percent of students who had not been disciplined.
Even students who were disciplined less frequently were still more likely to repeat a grade or drop out. A student who had experienced a discretionary disciplinary action was twice as likely to repeat a grade as a student who had the same characteristics and attended a similar school but was not suspended or expelled. The results were also troubling in regard to keeping students with disciplinary histories in school. Nearly 10 percent of students with at least one disciplinary contact dropped out of school, compared to just 2 percent of students with no disciplinary actions.

http://www.csg.org/pubs/capitolideas/sep_oct_2011/schooldiscipline.aspx

Some in the current culture do not want to recognize that boys have different styles, because to say otherwise is just not politically correct (P.C.). Being P.C., however, is throwing a lot of kids under the bus.

Dan Berrett has a provocative article, School Suspensions Among Boys May Be Linked to Lower College Attendance in the Chronicle of Higher Education.

In general, boys tend to score lower than girls on “noncognitive” measures like self-control. They are also more likely to have attention and behavioral problems, and be diagnosed with attention deficit hyperactivity disorder.

These reasons help explain why boys are far more likely than girls to be suspended from school, the study’s authors—Marianne Bertrand, a professor of economics at the University of Chicago’s Booth School of Business, and Jessica Pan, an assistant professor of economics at the National University of Singapore—write in a working paper describing their research. The paper, “The Trouble with Boys: Social Influences and the Gender Gap in Disruptive Behavior,” was released this week by the National Bureau of Economic Research.

Nearly one boy in four had been suspended for at least one day by eighth grade, while only one out of 10 girls had been, the authors note, based on surveys that tracked American students who entered kindergarten in 1988 and followed them for 12 years after eighth grade. The disparity has worsened over time. Suspension rates for boys went from nearly 16 percent to 24 percent between 1980 and 2006, the latest year studied, while the rates for girls stayed comparatively flat over that period.

As the likelihood of suspensions increases, students’ chances of making it to college decrease. Citing previous research, the authors note that one suspension lowers the chance of attending college by 16 percentage points, and of graduating from college by 9 percentage points….

The report comes amid mounting concern among some policy makers, scholars, and commentators over the performance of boys in the educational system, including at the postsecondary level. Women account for 57 percent of students enrolled on college campuses, according to the most recent federal data.

The authors acknowledge that biological factors may play a role in the discrepancy between boys’ and girls’ behavior. They also looked for environmental factors and concluded that those found in school accounted for little of the difference.

But their findings did suggest that boys’ behavioral problems are “subject to very strong environmental influences, particularly from the home.” Parents of girls, for example, are much more likely to have books in the home and to read to their children than are parents of boys. Parents are also more likely to take girls than boys to a concert, or to sign them up for an extracurricular activity, the authors note, citing the U.S. Department of Labor’s American Time Use Survey.

Related Content

John Hechinger has an article in Bloomberg/Business Week about the data, Women Top Men In Earning Bachelor’s Degrees, U.S. Data Shows There are some good information sources about helping boys to learn. PBS Parents in Understanding and Raising Boys has some great strategies for helping boys learn.

Trying to pretend there are no gender differences is leading to some differences in outcome for many male children. Even Beltrand and Pan want very badly to emphasize environmental factors, which are important, but clearly is an P.C. explanation which skates over biological gender differences.

Those trendy intellectuals who want to homogenize personalities into some “metrosexua”l ideal are sacrificing the lives of many children for their cherished ideal of some sociological utopia.

Resources:

Classroom Strategies to Get Boys Reading

Me Read? A Practical Guide to Improving Boys Literacy Skills

Understanding Gender Differences: Strategies To Support Girls and Boys

Helping Underachieving Boys Read Well and Often

Boys and Reading Strategies for Success

Dr. Wilda says this about that ©