Tag Archives: ETH Zurich

ETH Zurich study: Restoration helps forests recover faster

14 Aug

The United States Department of Agriculture (USDA) wrote about the benefits of prescribed burning:

Definition Prescribed burning is the deliberate use of fire to help manage a forest. It is a complex management tool and should be used by only those who are trained and experienced in its use.

Benefits Hazard Reduction Prescribed burning helps to eliminate fuels such as pine needles, hardwood leaves, fallen branches, and herbaceous vegetation that accumulate on the forest floor. These fuels increase the chance of destruction of young stands if a wildfire erupts.

Control of Understory Vegetation Prescribed burning helps control low-quality hardwoods and shrubs. Understory vegetation competes with pines for moisture and nutrients, and may interfere with regeneration….

Definition Prescribed burning is the deliberate use of fire to help manage a forest. It is a complex management tool and should be used by only those who are trained and experienced in its use.

Benefits Hazard Reduction Prescribed burning helps to eliminate fuels such as pine needles, hardwood leaves, fallen branches, and herbaceous vegetation that accumulate on the forest floor. These fuels increase the chance of destruction of young stands if a wildfire erupts.

Control of Understory Vegetation Prescribed burning helps control low-quality hardwoods and shrubs. Understory vegetation competes with pines for moisture and nutrients, and may interfere with regeneration. https://efotg.sc.egov.usda.gov/references/public/AL/338_js_PrescribedBurning.pdf

Native Americans used prescribed burning as a forest management practice. See, Indian Use of Fire in Early Oregon https://oregonencyclopedia.org/articles/anthropogenic_fire/#.XOte93dFzIU

See, https://drwilda.com/tag/native-american-forest-practices/

https://drwilda.com/tag/urban-forests/

  https://drwilda.com/tag/tree-canopy/   

Science Daily reported in Eastern forests shaped more by Native Americans’ burning than climate change:

Citation:

Eastern forests shaped more by Native Americans’ burning than climate change
Date: May 21, 2019
Source: Penn State
Summary:
Native Americans’ use of fire to manage vegetation in what is now the Eastern United States was more profound than previously believed, according to a researcher who determined that forest composition change in the region was caused more by land use than climate change.

Journal Reference:
Marc D. Abrams, Gregory J. Nowacki. Global change impacts on forest and fire dynamics using paleoecology and tree census data for eastern North America. Annals of Forest Science, 2019; 76 (1) DOI: 10.1007/s13595-018-0790-y

Science Daily reported in Restoration helps forests recover faster:

The rainforests of Southeast Asia are among the fastest declining tropical ecosystems worldwide. Researchers from 13 institutions studied an area of tropical forest in Sabah, Malaysian Borneo that had suffered heavy logging in the 1980s but was subsequently protected from further deforestation or conversion to agricultural land.

This long-term study paid special attention to the forest’s capacity to rebuild biomass. The researchers found that areas left to regenerate naturally recovered by as much as 2.9 tonnes of aboveground carbon per hectare per year. “This quantitatively confirms that if degraded forests get effective protection, they can recover well naturally,” says Christopher Philipson, Senior Scientist at ETH Zurich’s Chair of Ecosystem Management.

More importantly, the research team found that areas of forest that underwent active restoration recovered 50% faster, from 2.9 to 4.4 tonnes of aboveground carbon per hectare per year.

The research, published today in Science, has its origins in work that Professor Mark Cutler from University of Dundee carried out in Borneo almost 25 years ago. Cutler led the project with Professor David Burslem at the University of Aberdeen, and ETH Zurich’s Christopher Philipson, first author of the paper, who carried out the research at ETH Zurich and Dundee.

Fostering damaged forest

Commercial, selective logging in Sabah has been going on for decades, and has severely degraded large areas of the forest estate. While Sabah retains over 50% natural forest cover (with almost half of this area being fully protected), relatively little of this forest is in pristine condition. Restoration — particularly in heavily logged lowland forests — is considered essential to maintain biodiversity, carbon sequestration, and other ecosystem services….                                                                                                                                                  https://www.sciencedaily.com/releases/2020/08/200813142321.htm

Citation:

Restoration helps forests recover faster

Date:        August 13, 2020

Source:    ETH Zurich

Summary:

Actively restored forests recover above ground biomass faster than areas left to regenerate naturally after being logged, according to a long-term study on Borneo lowland rainforest.

Journal Reference:

Philipson CD, Cutler MEJ, Brodrich PG, et al. Active restoration accelerates the carbon recovery of human-​modified tropical forestsScience, 2020 DOI: 10.1126/science.aay4490

Here is the press release from ETH Zurich:

NEWS RELEASE 

Restoration helps forests recover faster

ETH ZURICH

The rainforests of Southeast Asia are among the fastest declining tropical ecosystems worldwide. Researchers from 13 institutions studied an area of tropical forest in Sabah, Malaysian Borneo that had suffered heavy logging in the 1980s but was subsequently protected from further deforestation or conversion to agricultural land.

This long-term study paid special attention to the forest’s capacity to rebuild biomass. The researchers found that areas left to regenerate naturally recovered by as much as 2.9 tonnes of aboveground carbon per hectare per year. “This quantitatively confirms that if degraded forests get effective protection, they can recover well naturally”, says Christopher Philipson, Senior Scientist at ETH Zurich’s Chair of Ecosystem Management.

More importantly, the research team found that areas of forest that underwent active restoration recovered 50% faster, from 2.9 to 4.4 tonnes of aboveground carbon per hectare per year.

The research, published today in Science, has its origins in work that Professor Mark Cutler from University of Dundee carried out in Borneo almost 25 years ago. Cutler led the project with Professor David Burslem at the University of Aberdeen, and ETH Zurich’s Christopher Philipson, first author of the paper, who carried out the research at ETH Zurich and Dundee.

Fostering damaged forest

Commercial, selective logging in Sabah has been going on for decades, and has severely degraded large areas of the forest estate. While Sabah retains over 50% natural forest cover (with almost half of this area being fully protected), relatively little of this forest is in pristine condition. Restoration – particularly in heavily logged lowland forests – is considered essential to maintain biodiversity, carbon sequestration, and other ecosystem services.

“This active restoration encourages naturally diverse forest, and is therefore much more beneficial for biodiversity than monocultures or plantation forests”, stresses Philipson. The approach involves cutting lianas (climbing plants that thrive in degraded forests, competing with trees and reducing seedling survival and growth) as well as weeding, and ‘enrichment planting’ of seedlings. The latter seeks to increase the valuable, native tree species in degraded forests that have been reduced through commercial logging. “In this way, restoration helps previously over-?used forests not only to recover carbon, but also to become ecologically sound and diverse again”, Philipson says.

Carbon price doesn’t cover the cost

Now, for the first time, a long time-?series dataset has demonstrated that active restoration helps forests to regenerate after disturbances. However, the current price of carbon doesn’t cover the cost of restoration, and this limits the impact that restoring forests could have as a means of mitigating climate change.

“The increase in forest regrowth from restoration coupled with average global restoration costs suggests carbon prices need to be much higher. If they were around US$40-80 per tonne CO2 in accordance with the 2016 Paris climate agreement, this would be an incentive to invest in restoration,” argues Dundee’s Professor Cutler. He sees protecting previously logged tropical forests from further degradation or even clearance as vitally important for reducing carbon emissions and conserving biodiversity. “We must find sustainable mechanisms for funding.”

Collaborative partnership on the ground

According to David Burslem, last author and Professor at the University of Aberdeen, scientists have known for some while that tropical forests can regenerate from logging if left undisturbed for long enough. But the extent of the reduction in recovery time achieved by simple low-?tech restoration techniques certainly was a surprise. “We gained this insight through a sustained investment in research by a multi-?national team over more than 20 years”, Burslem says.

For this study, Philipson ventured to remote areas of forest to measure the growth and biomass accumulation of trees. His work and indeed the entire study actively involved many local staff, scientists and organisations, while the Sabah government guaranteed effective protection of the forest. “The people and community of Sabah made this project successful; I’m looking forward to seeing more endeavours like this that promote the protection and restoration of tropical forests,” he says.

###

Reference

Philipson CD, Cutler MEJ, Brodrich PG, et al. Active restoration accelerates the carbon recovery of human-?modified tropical forests. Science, published online Aug 13th 2020, doi: 10.1126/science.aay4490

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

See, Envisioning a Great Green City: Nature needs cities. Cities need nature. 

https://www.nature.org/en-us/what-we-do/our-insights/perspectives/envisioning-a-great-green-city/

Resources:

Urban Forestry & Energy Conservation Bibliography 

https://articles.extension.org/pages/71120/urban-forestry-energy-conservation-bibliography

Urban Forestry Bibliography Created by the Forest Service

BLOGGER NOTE: WORDPRESS CHANGED THE INPUT FORMAT. IT IS CLUNKY. THERE ARE 2 SECTIONS WHICH ARE QUOTES: 1. SCIENCE DAILY AND 2. PRESS RELEASE. IF ANYONE KNOWS OF EASIER TO USE PLATFORMS PLEASE NOTIFY.

Where information leads to Hope. © Dr. Wilda.com

Dr. Wilda says this about that ©

Blogs by Dr. Wilda:

COMMENTS FROM AN OLD FART©
http://drwildaoldfart.wordpress.com/

Dr. Wilda Reviews ©
http://drwildareviews.wordpress.com/

Dr. Wilda ©
https://drwilda.com/

ETH Zurich study: Antimicrobial resistance is drastically rising

22 Sep

The National Pesticide Information wrote in Antimicrobials: Topic Fact Sheet:

What are antimicrobials?
Antimicrobial products kill or slow the spread of microorganisms. Microorganisms include bacteria, viruses, protozoans, and fungi such as mold and mildew.1 You may find antimicrobial products in your home, workplace, or school.
The U.S. Environmental Protection Agency (EPA) regulates antimicrobial products as pesticides, and the U.S. Food and Drug Administration (FDA) regulates antimicrobial products as drugs/antiseptics. As pesticides, antimicrobial products are used on objects such as countertops, toys, grocery carts, and hospital equipment. As antiseptics, antimicrobial products are used to treat or prevent diseases on people, pets, and other living things.
If a product shows “EPA” anywhere on the label, you know it’s a pesticide and NOT meant for use on the body. This fact sheet will focus on antimicrobials used as pesticides.
If a product label claims to kill, control, repel, mitigate or reduce a pest, it is a pesticide regulated by the U.S. EPA.2 When manufacturers make this kind of claim on the label, they must also include:
• application instructions that are effective at killing or controlling the pest, and
• first aid instructions, in case of accidental exposure.
What types of antimicrobial pesticides are there?
There are two general categories for antimicrobial pesticides: those that address microbes in public health settings, and those that do not. “Public health products” are designed to handle infectious microbes. See Table 1.
Table 1. Sites of application for antimicrobial pesticides1
Non-public health settings Public health settings
Microbes that may cause objects to spoil or rot Microbes that may cause people to get sick
• cooling towers
• fuel
• wood textiles
• paint
• paper products • bathrooms
• kitchens
• homes
• hospitals
• restaurants
There are three types of public health antimicrobials: sterilizers, disinfectants, and sanitizers. See Table 2.
Sanitizers are the weakest public-health antimicrobials. They reduce bacteria on surfaces.1 Some sanitizers may be used on food-contact surfaces such as countertops, cutting boards, or children’s high chairs. The label will indicate how a sanitizer can be used. Some sanitizers can be used only for non-food contact surfaces like toilet bowls and carpets, or air.5,6
Sterilizers are the strongest type of public health antimicrobial product. In addition to bacteria, algae, and fungi, they also control hard-to-kill spores.5 Many sterilizers are restricted-use pesticides. These require applicator training and certification. Sterilizers are used in medical and research settings when the presence of microbes must be prevented as much as possible. In addition to chemical sterilizers, high-pressure steam and ovens are also used to sterilize items.5
What do I need to know?
• Always follow the label directions. The “Directions for Use” are specific, and the product may not work if you don’t follow them.
• Never mix different antimicrobial products.
• Most antimicrobial products take time to work. Read the label to find out how long the product must remain in contact with the surface in order to sanitize, disinfect or sterilize it.10
• Dirt, food, slime, and other particles may reduce the effectiveness of antimicrobial products.10
• Take steps to reduce your exposure to antimicrobial pesticides. Some products can be harmful when touched or inhaled.
References:
1. What are Antimicrobial Pesticides?; U.S Environmental Protection Agency, Office of Prevention, Pesticides, and Toxic Substances, Office of Pesticide Programs, U.S. Government Printing Office: Washington, DC, 2010.
2. Pesticide Registration and Classification Procedures, Protection of the Environment; Code of Federal Regulations, Part 152, Title 40, 2010.
3. Anthrax Spore Decontamination Using Bleach (Sodium hypochlorite); U.S. Environmental Protection Agency, Office of Prevention, Pesticides, and Toxic Substances, Office of Pesticide Programs. U.S. Government Printing Office: Washington, DC, 2010.
4. Label Review Manual – Chapter 2: What is a Pesticide?; U.S Environmental Protection Agency, Office of Prevention, Pesticides, and Toxic Substances, Office of Pesticide Programs, U.S. Government Printing Office: Washington, DC, 2006.
5. Antimicrobial Pesticide Products; U.S Environmental Protection Agency, Office of Prevention, Pesticides, and Toxic Substances, Office of Pesticide Programs, U.S. Government Printing Office: Washington, DC, 2010.
6. Pesticide Labeling Questions & Answers; U.S Environmental Protection Agency, Office of Prevention, Pesticides, and Toxic Substances, Office of Pesticide Programs, U.S. Government Printing Office: Washington, DC, accessed Dec 2010. updated Dec 2010.
7. Antimicrobial Products Registered for Use Against the H1N1 Flu and Other Influenza A Viruses on Hard Surfaces; U.S Environmental Protection Agency, Office of Prevention, Pesticides, and Toxic Substances, Office of Pesticide Programs, U.S. Government Printing Office: Washington, DC, 2010.
8. Selected EPA-registered Disinfectants; U.S Environmental Protection Agency, Office of Prevention, Pesticides, and Toxic Substances, Office of Pesticide Programs, U.S. Government Printing Office: Washington, DC, 2010.
9. Gilbert, P.; McBain, A. J. Potential Impacts of Increased Use of Biocides in Consumer Products on Prevalence of Antibiotic Resistance. Clinical Microbiology Reviews, 16, 2, 189-208.
10. Rutala, W. A.; Weber, D. J. Guideline for Disinfection and Sterilization in Health Care Facilities, 2008. U.S. Center for Disease Control, Healthcare Infection Control Practices Advisory Committee (HICPAC). https://www.cdc.gov/infectioncontrol/pdf/guidelines/disinfection-guidelines.pdf (accessed Dec 2010), updated Dec 2010.
11. Sanitizer Test for Inanimate Surfaces; U.S Environmental Protection Agency, Office of Prevention, Pesticides, and Toxic Substances, Office of Pesticide Programs, U.S. Government Printing Office: Washington, DC, 2010. http://npic.orst.edu/factsheets/antimicrobials.html

There is growing alarm about antimicrobial resistance.

The Centers for Disease Control and Prevention describe antimicrobial resistance in

About Antimicrobial Resistance:
Antibiotic resistance happens when germs like bacteria and fungi develop the ability to defeat the drugs designed to kill them. That means the germs are not killed and continue to grow.
Infections caused by antibiotic-resistant germs are difficult, and sometimes impossible, to treat. In most cases, antibiotic-resistant infections require extended hospital stays, additional follow-up doctor visits, and costly and toxic alternatives.
Antibiotic resistance does not mean the body is becoming resistant to antibiotics; it is that bacteria have become resistant to the antibiotics designed to kill them.
Antibiotic Resistance Threatens Everyone

Antibiotic resistance has the potential to affect people at any stage of life, as well as the healthcare, veterinary, and agriculture industries, making it one of the world’s most urgent public health problems.
Each year in the U.S., at least 2 million people are infected with antibiotic-resistant bacteria, and at least 23,000 people die as a result.
No one can completely avoid the risk of resistant infections, but some people are at greater risk than others (for example, people with chronic illnesses). If antibiotics lose their effectiveness, then we lose the ability to treat infections and control public health threats.
Many medical advances are dependent on the ability to fight infections using antibiotics, including joint replacements, organ transplants, cancer therapy, and treatment of chronic diseases like diabetes, asthma, and rheumatoid arthritis…. https://www.cdc.gov/drugresistance/about.html

ETH Zurich studied antimicrobial resistance.

Science Daily reported in Antimicrobial resistance is drastically rising:

The world is experiencing unprecedented economic growth in low- and middle-income countries. An increasing number of people in India, China, Latin America and Africa have become wealthier, and this is reflected in their consumption of meat and dairy products. In Africa, meat consumption has risen by more than half; in Asia and Latin America it is up by two-thirds.
To meet this growing demand, animal husbandry has been intensified, with among other things, an increased reliance on the use of antimicrobials. Farmers use antimicrobials to treat and prevent infections for animals raised in crowded conditions but these drugs are also used to increase weight gain, and thus improve profitability.
This excessive and indiscriminate use of antimicrobials has serious consequences: the proportion of bacteria resistant to antimicrobials is rapidly increasing around the world. Drugs are losing their efficacy, with important consequences for the health of animals but also potentially for humans.
Mapping resistance hotspots
Low- and middle income countries have limited surveillance capacities to track antimicrobial use and resistance on farms. Antimicrobial use is typically less regulated and documented there than in wealthy industrialized countries with established surveillance systems.
The team of researchers led by Thomas Van Boeckel, SNF Assistant Professor of Health Geography and Policy at ETH Zurich, has recently published a map of antimicrobial resistance in animals in low- and middle-income countries in the journal Science.
The team assembled a large literature database and found out where, and in which animals species resistance occurred for the common foodborne bacteria Salmonella, E. coli, Campylobacter and Staphylococcus.
According to this study, the regions associated with high rates of antimicrobial resistance in animals are northeast China, northeast India, southern Brazil, Iran and Turkey. In these countries, the bacteria listed above are now resistant to a large number of drug that are used not only in animals but also in human medicine. An important finding of the study is that so far, few resistance hotspots have emerged in Africa with the exception of Nigeria and the surroundings of Johannesburg.
The highest resistance rates were associated with the antimicrobials most frequently used in animals: tetracyclines, sulphonamides, penicillins and quinolones. In certain regions, these compounds have almost completely lost their efficacy to treat infections.
Alarming trend in multi-drug resistance
The researchers introduced a new index to track the evolution of resistance to multiple drugs: the proportion of drugs tested in each region with resistance rates higher than 50%. Globally, this index has almost tripled for chicken and pigs over the last 20 years. Currently, one third of drugs fail 50% of the time in chicken and one quarter of drug fail in 50% of the time in pigs.
“This alarming trend shows that the drugs used in animal farming are rapidly losing their efficacy,” Van Boeckel says. This will affect the sustainability of the animal industry and potentially the health of consumers.
It is of particular concern that antimicrobial resistance is rising in developing and emerging countries because this is where meat consumption is growing the fastest, while access to veterinary antimicrobials remains largely unregulated. “Antimicrobial resistance is a global problem. There is little point in making considerable efforts to reduce it on one side of the world if it is increasing dramatically on the other side,” the ETH researcher says…. https://www.sciencedaily.com/releases/2019/09/190919142211.htm

Citation:

Antimicrobial resistance is drastically rising
Date: September 19, 2019
Source: ETH Zurich
Summary:
Researchers have shown that antimicrobial-resistant infections are rapidly increasing in animals in low and middle income countries. They produced the first global of resistance rates, and identified regions where interventions are urgently needed.
Journal Reference:
Thomas P. Van Boeckel, João Pires, Reshma Silvester, Cheng Zhao, Julia Song, Nicola G. Criscuolo, Marius Gilbert, Sebastian Bonhoeffer, Ramanan Laxminarayan. Global trends in antimicrobial resistance in animals in low- and middle-income countries. Science, 2019; 365 (6459): eaaw1944 DOI: 10.1126/science.aaw1944

Here is the press release from ETH Zurich:

Antimicrobial resistance is drastically rising
19.09.2019 | News
By: Peter Rüegg
An international team of researchers led by ETH has shown that antimicrobial-resistant infections are rapidly increasing in animals in low and middle income countries. They produced the first global of resistance rates, and identified regions where interventions are urgently needed.

The world is experiencing unprecedented economic growth in low- and middle-income countries. An increasing number of people in India, China, Latin America and Africa have become wealthier, and this is reflected in their consumption of meat and dairy products. In Africa, meat consumption has risen by more than half; in Asia and Latin America it is up by two-thirds.
To meet this growing demand, animal husbandry has been intensified, with among other things, an increased reliance on the use of antimicrobials. Farmers use antimicrobials to treat and prevent infections for animals raised in crowded conditions but these drugs are also used to increase weight gain, and thus improve profitability.
This excessive and indiscriminate use of antimicrobials has serious consequences: the proportion of bacteria resistant to antimicrobials is rapidly increasing around the world. Drugs are losing their efficacy, with important consequences for the health of animals but also potentially for humans.
Mapping resistance hotspots
Low- and middle income countries have limited surveillance capacities to track antimicrobial use and resistance on farms. Antimicrobial use is typically less regulated and documented there than in wealthy industrialized countries with established surveillance systems.
The team of researchers led by Thomas Van Boeckel, SNF Assistant Professor of Health Geography and Policy at ETH Zurich, has recently published a map of antimicrobial resistance in animals in low- and middle-income countries in the journal Science.
The team assembled a large literature database and found out where, and in which animals species resistance occurred for the common foodborne bacteria Salmonella, E. coli, Campylobacter and Staphylococcus.

According to this study, the regions associated with high rates of antimicrobial resistance in animals are northeast China, northeast India, southern Brazil, Iran and Turkey. In these countries, the bacteria listed above are now resistant to a large number of drug that are used not only in animals but also in human medicine. An important finding of the study is that so far, few resistance hotspots have emerged in Africa with the exception of Nigeria and the surroundings of Johannesburg.
The highest resistance rates were associated with the antimicrobials most frequently used in animals: tetracyclines, sulphonamides, penicillins and quinolones. In certain regions, these compounds have almost completely lost their efficacy to treat infections.
Alarming trend in multi-drug resistance
The researchers introduced a new index to track the evolution of resistance to multiple drugs: the proportion of drugs tested in each region with resistance rates higher than 50%. Globally, this index has almost tripled for chicken and pigs over the last 20 years. Currently, one third of drugs fail 50% of the time in chicken and one quarter of drug fail in 50% of the time in pigs.
“This alarming trend shows that the drugs used in animal farming are rapidly losing their efficacy,” Van Boeckel says. This will affect the sustainability of the animal industry and potentially the health of consumers.
It is of particular concern that antimicrobial resistance is rising in developing and emerging countries because this is where meat consumption is growing the fastest, while access to veterinary antimicrobials remains largely unregulated. “Antimicrobial resistance is a global problem. There is little point in making considerable efforts to reduce it on one side of the world if it is increasing dramatically on the other side,” the ETH researcher says.
Input from thousands of studies
For their current study, the team of researchers from ETH, Princeton University and the Free University of Brussels gathered thousands of publications as well as unpublished veterinary reports from around the world. The researchers used this database to produce the maps of antimicrobial resistance.
However, the maps do not cover the entire research area; there are large gaps in particular in South America, which researchers attribute to a lack of publicly available data. “There are hardly any official figures or data from large parts of South America,” says co-author and ETH postdoctoral fellow Joao Pires. He said this surprised him, as much more data is available from some African countries , despite resources for conducting surveys being more limited than in South America.
Open-access web platform
The team has created an open-access web platform resistancebank.org to share their findings and gather additional data on resistance in animals. For example, veterinarians and state-authorities can upload data on resistance in their region to the platform and share it with other people who are interested.
Van Boeckel hopes that scientists from countries with more limited resources for whom publishing cost in academic journal can be a barrier will be able to share their findings and get recognition for their work on the platform. “In this way, we can ensure that the data is not just stuffed away in a drawer” he says, “because there are many relevant findings lying dormant, especially in Africa or India, that would complete the global picture of resistance that we try to draw in this first assessment. The platform could also help donors to identify the regions most affected by resistance in order to be able to finance specific interventions.
As meat production continues to rise, the web platform could help target interventions against AMR and assist a transition to more sustainable farming practices in low- and middle-income countries. “The rich countries of the Global North, where antimicrobials have been used since the 1950s, should help make the transition a success,” says Van Boeckel.
The research was funded by the Swiss National Science Foundation and the Branco Weiss Fellowship.
Reference
Van Boeckel TP, Pires J, Silvester R, Zhao C , Song J, Criscuolo NG, Gilbert M, Bonhoeffer S, Laxminarayan R. Global trends in antimicrobial resistance in animals in low- and middle-income countries. Science 365, 2019, doi: 10.1126/science.aaw1944
Research|
International|
Agricultural sciences|
Sustainability|
World food system https://ethz.ch/en/news-and-events/eth-news/news/2019/09/antimicrobial-resistances-on-the-rise.html

The Centers for Disease Control and Prevention have a page devoted to prevention of antimicrobial resistance.

Antibiotic resistance is one of the biggest public health challenges of our time. Each year in the U.S., at least 2 million people get an antibiotic-resistant infection, and at least 23,000 people die. Fighting this threat is a public health priority that requires a collaborative global approach across sectors. CDC is working to combat this threat. Find out how you can help.

About Antimicrobial Resistance
Food & Food Animals
Combat Resistance Globally
Biggest Threats & Data
Laboratory Testing & Resources
Latest News & Resources
Protect Yourself & Your Family
What CDC is Doing
AR Isolate Bank
Healthcare Providers
U.S. Action

https://www.cdc.gov/drugresistance/index.html

Where information leads to Hope. © Dr. Wilda.com

Dr. Wilda says this about that ©

Blogs by Dr. Wilda:

COMMENTS FROM AN OLD FART©
http://drwildaoldfart.wordpress.com/

Dr. Wilda Reviews ©
http://drwildareviews.wordpress.com/

Dr. Wilda ©
https://drwilda.com/