Tag Archives: Deep Brain Stimulation for Mental Illnesses Raises Ethical Concerns

University of Washington Health Sciences/UW Medicine study: Scientists can now manipulate brain cells using smartphone

11 Aug

The staff of Mayo Clinic wrote an excellent synopsis about Deep brain stimulation:

Overview
Deep brain stimulation involves implanting electrodes within certain areas of your brain. These electrodes produce electrical impulses that regulate abnormal impulses. Or the electrical impulses can affect certain cells and chemicals within the brain.
The amount of stimulation in deep brain stimulation is controlled by a pacemaker-like device placed under the skin in your upper chest. A wire that travels under your skin connects this device to the electrodes in your brain.
Deep brain stimulation is approved to treat a number of conditions, such as:
• Dystonia
• Epilepsy
• Essential tremor
• Obsessive-compulsive disorder
• Parkinson’s disease
Deep brain stimulation is also being studied as a potential treatment for:
• Addiction
• Chronic pain
• Cluster headache
• Dementia
• Depression (major)
• Huntington’s disease
• Multiple sclerosis
• Stroke recovery
• Tourette syndrome
• Traumatic brain injury
Why it’s done
Deep brain stimulation is an established treatment for people with movement disorders, such as essential tremor, Parkinson’s disease and dystonia, and psychiatric conditions, such as obsessive-compulsive disorder. It’s also approved for use by the Food and Drug Administration to reduce seizures in difficult-to-treat epilepsy.
This treatment is reserved for people who aren’t able to get control of their symptoms with medications…. https://www.mayoclinic.org/tests-procedures/deep-brain-stimulation/about/pac-20384562

Resources:

What is deep brain stimulation?                 https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/deep-brain-stimulation

Wireless communication with implanted medical devices using the conductive properties of the body https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4156009/

Science Daily reported the University of Washington Health Sciences/UW Medicine study, Scientists can now manipulate brain cells using smartphone:

A team of scientists in Korea and the United States have invented a device that can control neural circuits using a tiny brain implant controlled by a smartphone.
Researchers, publishing in Nature Biomedical Engineering, believe the device can speed up efforts to uncover brain diseases such as Parkinson’s, Alzheimer’s, addiction, depression, and pain.
The device, using Lego-like replaceable drug cartridges and powerful bluetooth low-energy, can target specific neurons of interest using drug and light for prolonged periods.
“The wireless neural device enables chronic chemical and optical neuromodulation that has never been achieved before,” said lead author Raza Qazi, a researcher with the Korea Advanced Institute of Science and Technology (KAIST) and University of Colorado Boulder.
Qazi said this technology significantly overshadows conventional methods used by neuroscientists, which usually involve rigid metal tubes and optical fibers to deliver drugs and light. Apart from limiting the subject’s movement due to the physical connections with bulky equipment, their relatively rigid structure causes lesion in soft brain tissue over time, therefore making them not suitable for long-term implantation. Though some efforts have been put to partly mitigate adverse tissue response by incorporating soft probes and wireless platforms, the previous solutions were limited by their inability to deliver drugs for long periods of time as well as their bulky and complex control setups.
To achieve chronic wireless drug delivery, scientists had to solve the critical challenge of exhaustion and evaporation of drugs. Researchers from the Korea Advanced Institute of Science and Technology and the University of Washington in Seattle collaborated to invent a neural device with a replaceable drug cartridge, which could allow neuroscientists to study the same brain circuits for several months without worrying about running out of drugs.
These ‘plug-n-play’ drug cartridges were assembled into a brain implant for mice with a soft and ultrathin probe (thickness of a human hair), which consisted of microfluidic channels and tiny LEDs (smaller than a grain of salt), for unlimited drug doses and light delivery.
Controlled with an elegant and simple user interface on a smartphone, neuroscientists can easily trigger any specific combination or precise sequencing of light and drug deliveries in any implanted target animal without need to be physically inside the laboratory. Using these wireless neural devices, researchers could also easily setup fully automated animal studies where behaviour of one animal could positively or negatively affect behaviour in other animals by conditional triggering of light and/or drug delivery.
“This revolutionary device is the fruit of advanced electronics design and powerful micro and nanoscale engineering,” said Jae-Woong Jeong, a professor of electrical engineering at KAIST. “We are interested in further developing this technology to make a brain implant for clinical applications.”
Michael Bruchas, a professor of anesthesiology and pain medicine and pharmacology at the University of Washington School of Medicine, said this technology will help researchers in many ways.
“It allows us to better dissect the neural circuit basis of behaviour, and how specific neuromodulators in the brain tune behaviour in various ways,” he said. “We are also eager to use the device for complex pharmacological studies, which could help us develop new therapeutics for pain, addiction, and emotional disorders….” https://www.sciencedaily.com/releases/2019/08/190805143525.htm

Citation:

Scientists can now manipulate brain cells using smartphone
Date: August 5, 2019
Source: University of Washington Health Sciences/UW Medicine
Summary:
A team of scientists have invented a device that can control neural circuits using a tiny brain implant controlled by a smartphone. The device could speed up efforts to uncover brain diseases such as Parkinson’s, Alzheimer’s, addiction, depression, and pain.

Journal Reference:
Raza Qazi, Adrian M. Gomez, Daniel C. Castro, Zhanan Zou, Joo Yong Sim, Yanyu Xiong, Jonas Abdo, Choong Yeon Kim, Avery Anderson, Frederik Lohner, Sang-Hyuk Byun, Byung Chul Lee, Kyung-In Jang, Jianliang Xiao, Michael R. Bruchas, Jae-Woong Jeong. Wireless optofluidic brain probes for chronic neuropharmacology and photostimulation. Nature Biomedical Engineering, 2019; DOI: 10.1038/s41551-019-0432-1

Here is the press release from the University of Washington:

NEWS RELEASE

August 5, 2019

For immediate release

Scientists manipulate brain cells using a smartphone

A soft neural implant, capable of delivering multiple drugs and color lights, might speed research on diseases such as Parkinson’s, Alzheimer’s, addiction, depression and pain.

MEDIA CONTACT:
Bobbi Nodell, bnodell@uw.edu, 206.543.7129
Email Facebook Twitter Share

A team of scientists in South Korea and the United States have invented a device that can control neural circuits by using a tiny brain implant managedby a smartphone.
Publishing in Nature Biomedical Engineering, the researchers said the soft neural implant is the first wireless neural device capable of delivering multiple drugs and color lights. The device could speed up efforts to uncover brain diseases, such as Parkinson’s, Alzheimer’s, addiction, depression, and pain.
“The wireless neural device enables chronic chemical and optical neuromodulation that has never been achieved before,” said lead author Raza Qazi, a researcher with the Korea Advanced Institute of Science and Technology and University of Colorado Boulder.
Co-author Michael Bruchas, a professor of anesthesiology and pain medicine and pharmacology at the University of Washington School of Medicine, said this technology will help researchers in many ways.
“It allows us to better dissect the neural circuit basis of behavior, and how specific neuromodulators in the brain tune behavior in various ways,” he said. “We are also eager to use the device for complex pharmacological studies, which could help us develop new therapeutics for pain, addiction and emotional disorders.”
The device uses Lego-like replaceable drug cartridges and powerful bluetooth low-energy to deliver drugs and light to specific neurons of interest.
Resarchers said this technology significantly overshadows conventional neuroscience methods, which usually involve rigid metal tubes and optical fibers. Apart from limiting the subject’s movement due to the physical connections with bulky equipment, their relatively rigid structure causes lesion in soft brain tissue over time, therefore making them not suitable for long-term implantation. Though some efforts have partly mitigate adverse tissue response by incorporating soft probes and wireless platforms, the previous solutions were limited by their inability to deliver drugs for long periods of time as well as their bulky and complex control setups.
To achieve chronic wireless drug delivery, scientists had to solve the critical challenge of exhaustion and evaporation of drugs. The researchers collaborated to invent the neural device, which could allow neuroscientists to study the same brain circuits for several months without worrying about running out of drugs.
These “plug and play” drug cartridges were assembled into a brain implant for mice with a soft and ultrathin probe, the thickness of a human hair, which consisted of microfluidic channels and tiny LEDs, smaller than a grain of salt, for unlimited drug doses and light delivery.
Controlled with an elegant, simple user interface on a smartphone, the device can easily trigger any specific combination or precise sequencing of light and drug deliveries in any implanted target animal without need to be inside the laboratory. Using these wireless neural devices, researchers could also easily setup fully automated animal studies where behavior of one animal could positively or negatively affect behaviour in other animals by conditional triggering of light and/or drug delivery.
“This revolutionary device is the fruit of advanced electronics design and powerful micro and nanoscale engineering,” said Jae-Woong Jeong, a professor of electrical engineering at KAIST. “We are interested in further developing this technology to make a brain implant for clinical applications.”
The researchers at the Jeong group at KAIST, South Korea, develop soft electronics for wearable and implantable devices. The neuroscientists at the Bruchas Lab in Seattle study brain circuits that control stress, depression, addiction, pain and other neuropsychiatric disorders. This collaborative effort among engineers and neuroscientists over three years and tens of design iterations led to the successful validation of this brain implant in freely moving mice.
This work was supported by grants from the National Research Foundation of Korea, the National Institutes of Health, National Institute on Drug Abuse, and Mallinckrodt Professorship.

Resources:

Deep Brain Stimulation                                                   https://www.aans.org/Patients/Neurosurgical-Conditions-and-Treatments/Deep-Brain-Stimulation

Ethical Issues in Deep Brain Stimulation https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3096836/

Deep Brain Stimulation for Mental Illnesses Raises Ethical Concerns https://leapsmag.com/deep-brain-stimulation-mental-illnesses-raises-ethical-concerns/

Ethical Considerations in Deep Brain Stimulation Treatment https://pjb.mycpanel2.princeton.edu/wp/index.php/2016/03/09/ethical-considerations-in-deep-brain-stimulation-treatment/

Where information leads to Hope. © Dr. Wilda.com

Dr. Wilda says this about that ©

Blogs by Dr. Wilda:

COMMENTS FROM AN OLD FART©
http://drwildaoldfart.wordpress.com/

Dr. Wilda Reviews ©
http://drwildareviews.wordpress.com/

Dr. Wilda ©
https://drwilda.com/