Lawrence Berkeley National Laboratory: New technology helps pinpoint sources of water contamination

5 Oct

National Geographic has a good overview of water pollution:

As technology improves, scientists are able to detect more pollutants, and at smaller concentrations, in Earth’s freshwater bodies. Containing traces of contaminants ranging from birth control pills and sunscreen to pesticides and petroleum, our planet’s lakes, rivers, streams, and groundwater are often a chemical cocktail.

Beyond synthetic pollution, freshwater is also the end point for biological waste, in the form of human sewage, animal excrement, and rainwater runoff flavored by nutrient-rich fertilizers from yards and farms. These nutrients find their way through river systems into seas, sometimes creating coastal ocean zones void of oxygen—and therefore aquatic life—and making the connection between land and sea painfully obvious. When you dump paint down the drain, it often ends up in the ocean, via freshwater systems….

Fast Facts

  • In developing countries, 70 percent of industrial wastes are dumped untreated into waters, polluting the usable water supply.
  • On average, 99 million pounds (45 million kilograms) of fertilizers and chemicals are used each year….                                                                                                                          http://environment.nationalgeographic.com/environment/freshwater/pollution/

Water pollution is one toxin which affects children.

The Agency for Toxic Effects and Disease Registry (ATEDR) has some good information about the effects of toxins on children. In Principles of Pediatric Environmental Health: What Are Special Considerations Regarding Toxic Exposures to Young and School-age Children, as Well as Adolescents? ATEDR reports:

Young Child (2 to 6 years old)

With the newly acquired ability to run, climb, ride tricycles, and perform other mobile and exploratory activities, the young child’s environment expands, as does the risk of exposure.

Many of a young child’s toxic exposures may occur from ingestion. If the child’s diet is deficient in iron or calcium, the small intestine avidly absorbs lead….

School-aged Children (6 to 12 years old)

School-aged children spend increasingly greater amounts of time in outdoor, school, and after-school environments. They may be exposed to outdoor air pollution, including

  • widespread air pollutants,
  • ozone, particulates, and
  • nitrogen and sulfur oxides.

These result primarily from fossil fuel combustion. Although these pollutants concentrate in urban and industrial areas, they are windborne and distribute widely. Local pockets of intense exposure may result from toxic air and soil pollutants emanating from hazardous waste sites, leaking underground storage tanks, or local industry. One example of a localized toxic exposure adverse effect was seen in children exposed to high doses of lead released into the air from a lead smelter in Idaho. When tested 15 to 20 years later, these children showed reduced neurobehavioral and peripheral nerve function [ATSDR 1997b]….

In addition, some school age children engage in activity such as

  • lawn care,
  • yard work, and
  • trash pickup.

These and other work situations may put them at risk for exposures to hazardous substances such as pesticides used to treat lawns.

Adolescents (12 to 18 years old)

But nothing more than just adolescent behavior may result in toxic exposures. Risk-taking behaviors of adolescents may include exploring off-limit industrial waste sites or abandoned buildings. For example, in one reported case, teenagers took elemental mercury from an old industrial facility and played with and spilled the elemental mercury in homes and cars [Nadakavukaren 2000]. Teens may also climb utility towers or experiment with psychoactive substances (inhalant abuse, for example). Cigarette smoking and other tobacco use often begins during adolescence. For more information about adolescent tobacco use see CDC Office of Smoking and Health at http://www.cdc.gov/tobacco

Compared with younger children, adolescents are more likely to engage in hobbies and school activities involving exposure to

  • solvents,
  • caustics, or
  • other dangerous chemicals.

Few schools include basic training in industrial hygiene as a foundation for safety at work, at school, or while enjoying hobbies.

Many adolescents may encounter workplace hazards through after-school employment. Working adolescents tend to move in and out of the labor market, changing jobs and work schedules in response to employer needs or their own life circumstances [Committee on the Health and Safety Implications of Child Labor 1998]. In the United States, adolescents work predominately in retail and service sectors. These are frequently at entry-level jobs in

  • exterior painting of homes,
  • fast-food restaurants,
  • gas stations and automotive repair shops,
  • nursing homes,
  • parks and recreation, and
  • retail stores.

Such work may expose adolescents to commercial cleaners, paint thinners, solvents, and corrosives by inhalation or splashes to the skin or eyes. The National Institute of Occupational Safety and Health (NIOSH) estimated that, on average, 67 workers under age 18 died from work-related injuries each year during 1992-2000 [NIOSH 2003]. In 1998, an estimated 77,000 required treatment in hospital emergency departments [NIOSH 2003]….

Metabolic Vulnerability of Adolescents

Metabolic processes change during adolescence. Changes in cytochrome P450 expression [Nebert and Gonzalez 1987] result in a decrease in the metabolism rate of some xenobiotics dependent on the cytochrome CYP (P450) – for example, the concentration of theophylline increases in blood [Gitterman and Bearer 2001]. The metabolic rate of some xenobiotics is reduced in response to the increased secretion of growth hormone, steroids, or both that occur during the adolescent years [Gitterman and Bearer 2001]. The implications of these changes on the metabolism of environmental contaminants are areas of intense research. By the end of puberty, the metabolism of some xenobiotics achieves adult levels.

Puberty results in the rapid growth, division, and differentiation of many cells; these changes may result in vulnerabilities. Profound scientific and public interest in endocrine disruptors – that is, chemicals with hormonal properties that mimic the actions of naturally occurring hormones – reflects concerns about the effect of chemicals on the developing reproductive system. Even lung development in later childhood and adolescence may be disrupted by chronic exposure to air pollutants, including

  • acid vapors,
  • elemental carbon,
  • nitrogen dioxide, and
  • particulate matter [Gauderman et al. 2004].

Citation:

Principles of Pediatric Environmental Health
What Are Special Considerations Regarding Toxic Exposures to Young and School-age Children, as Well as Adolescents?

Course: WB2089
CE Original Date: February 15, 2012
CE Expiration Date: February 15, 2014
Download Printer-Friendly version  [PDF – 819 KB]

http://www.atsdr.cdc.gov/csem/csem.asp?csem=27&po=10https://drwilda.com/2012/07/08/toxic-dangers-in-schools/

Lawrence Berkeley National Laboratory (Berkeley) developed a more precise test to detect water contamination.

Science Daily reported in New technology helps pinpoint sources of water contamination:

When the local water management agency closes your favorite beach due to unhealthy water quality, how reliable are the tests they base their decisions on? As it turns out, those tests, as well as the standards behind them, have not been updated in decades. Now scientists from Lawrence Berkeley National Laboratory (Berkeley Lab) have developed a highly accurate, DNA-based method to detect and distinguish sources of microbial contamination in water.

Using the award-winning PhyloChip, a credit card-sized device that can detect the presence of more than 60,000 species of bacteria and archaea, the new method was found to be more sensitive than conventional methods at assessing health risks. In tests at the Russian River watershed in Northern California, the Berkeley Lab researchers found instances where their method identified potential human health risks that conventional fecal indicator tests had failed to detect. Conversely, they also found instances where the conventional tests flagged bacteria that weren’t likely risks to human health.

The research was led by Eric Dubinsky and Gary Andersen, microbial ecologists at Berkeley Lab, and was published recently in the journal Water Research in an article titled, “Microbial source tracking in impaired watersheds using PhyloChip and machine-learning classification.” Steven Butkus of the North Coast Regional Water Quality Control Board, which supported part of the research, was also a co-author.

“With the PhyloChip, in an overnight test we can get a full picture of the microorganisms in any given sample,” Dubinsky said. “Instead of targeting one organism, we’re essentially getting a fingerprint of the microbial community of potential sources in that sample. So it gives us a more comprehensive picture of what’s going on. It’s a novel way of going about source tracking.”

What local water agencies currently do is collect water samples, culture the bacteria overnight, and then check the growth level of two types of bacteria, E. coli and Enterococcus, which are presumed to be indicators of fecal contamination….                                                                               https://www.sciencedaily.com/releases/2016/10/161004141522.htm

Citation:

New technology helps pinpoint sources of water contamination

Date:        October 4, 2016

Source:    Lawrence Berkeley National Laboratory

Summary:

When the local water management agency closes your favorite beach due to unhealthy water quality, how reliable are the tests they base their decisions on? As it turns out, those tests, as well as the standards behind them, have not been updated in decades. Now scientists have developed a highly accurate, DNA-based method to detect and distinguish sources of microbial contamination in water.

Journal Reference:

  1. Eric A. Dubinsky, Steven R. Butkus, Gary L. Andersen. Microbial source tracking in impaired watersheds using PhyloChip and machine-learning classification. Water Research, 2016; 105: 56 DOI: 10.1016/j.watres.2016.08.035

Here is the press release from Berkeley Lab:

News Center

New Technology Helps Pinpoint Sources of Water Contamination

Berkeley Lab develops better method of environmental monitoring using the PhyloChip, finds surprising results in Russian River watershed

News Release Julie Chao (510) 486-6491 • October 4, 2016

When the local water management agency closes your favorite beach due to unhealthy water quality, how reliable are the tests they base their decisions on? As it turns out, those tests, as well as the standards behind them, have not been updated in decades. Now scientists from Lawrence Berkeley National Laboratory (Berkeley Lab) have developed a highly accurate, DNA-based method to detect and distinguish sources of microbial contamination in water.

Using the award-winning PhyloChip, a credit card-sized device that can detect the presence of more than 60,000 species of bacteria and archaea, the new method was found to be more sensitive than conventional methods at assessing health risks. In tests at the Russian River watershed in Northern California, the Berkeley Lab researchers found instances where their method identified potential human health risks that conventional fecal indicator tests had failed to detect. Conversely, they also found instances where the conventional tests flagged bacteria that weren’t likely risks to human health.

The research was led by Eric Dubinsky and Gary Andersen, microbial ecologists at Berkeley Lab, and was published recently in the journal Water Research in an article titled, “Microbial source tracking in impaired watersheds using PhyloChip and machine-learning classification.” Steven Butkus of the North Coast Regional Water Quality Control Board, which supported part of the research, was also a co-author.

“With the PhyloChip, in an overnight test we can get a full picture of the microorganisms in any given sample,” Dubinsky said. “Instead of targeting one organism, we’re essentially getting a fingerprint of the microbial community of potential sources in that sample. So it gives us a more comprehensive picture of what’s going on. It’s a novel way of going about source tracking.”

What local water agencies currently do is collect water samples, culture the bacteria overnight, and then check the growth level of two types of bacteria, E. coli and Enterococcus, which are presumed to be indicators of fecal contamination.

Power of the PhyloChip

However, this method doesn’t distinguish between sources­. The bacteria could have come from humans, cows, ducks, sewage, or even decaying vegetation.

“These tests have been used for decades and are relatively primitive,” Dubinsky said. “Back in the 1970s when the Clean Water Act was developed and we had sewage basically flowing into our waters, these tests worked really well. Epidemiological studies showed an association of these bacteria with levels of illness of people who used the water. These bacteria don’t necessarily get you sick, but they’re found in sewage and fecal matter. That’s why they’re measured.”

As pollution from point sources—single identifiable sources such as sewage—has been cleaned up over time, the emerging concern has become what are known as nonpoint sources, or diffuse sources, throughout the watershed, such as agricultural lands.

“The picture is much more complicated now than it was back then, when the concern was really point sources,” Dubinsky added.

The PhyloChip, which was developed by Andersen and several other Berkeley Lab scientists, has been used for a number of medical, agricultural, and environmental purposes, including understanding air pollution, the ecology of coral reefs, and environmental conditions of the Gulf of Mexico after the BP oil spill. With 1 million probes, it identifies microbes based on variations of a specific gene, with no culturing needed.

“About seven years ago we started doing water quality work, and we realized the PhyloChip could provide a fundamentally new and improved method for doing source tracking,” Andersen said.

A Library of Poop

Determining the source of any particular pathogen is not a straightforward task. In most cases, a single microbe is not a definitive marker of an animal or other source. “A microbial community is complex,” Dubinsky said. “A cow may have 1,000 different organisms.”

So Andersen and Dubinsky had an idea. “We had Laleh Coté, an intern at the time and now a Lab employee, run around and basically collect poop from all sorts of animals,” said Andersen. “What we’ve done since then is develop a reference library of the microbial communities that occur in different types of poop—we have cows, horses, raccoons, humans, different types of birds, pigs, sea lions, and other animals, as well as sewage and septage. We used that library to develop a model.”

The new method takes the unknown sample and compares it against this microbial reference library. “We’ve used the PhyloChip in a way that it hasn’t been used before by using machine learning models to analyze the data in order to detect and classify sources,” Andersen said. “It’s essentially giving you a statistical probability that a microbial community came from a particular source.”

They validated their method by comparing it to about 40 other methods of microbial source tracking in a California study. “We were the only method that could detect all sources and get them right,” Dubinsky said.

If the source is an animal that is not in the reference library, their method can still point you in the right direction. “For example, in that study, one sample was a chicken,” said Dubinsky. “We hadn’t analyzed chickens, but we had geese, gulls, and pigeons. We were still able to determine that the sample was a bird.”

In extensive testing throughout the Russian River watershed, which is out of compliance with the Clean Water Act, the Berkeley Lab researchers found widespread contamination by human sources close to areas where communities rely on aging septic tanks.

They also found significant human contamination immediately after a weekend jazz festival, whereas testing by conventional methods yielded a much weaker signal after a time lag of a couple days. “Our method is more sensitive to human contamination than those fecal indicator tests are,” Dubinsky said.

Next Steps

The team is now working on characterizing the microbial community of naturally occurring E. coli and Enterococci, using Hawaii with its warm waters as a testing ground. “They can occur naturally in sediments and decaying kelp and vegetation,” Dubinsky said. “It is known that they do, but nobody has developed a test to definitively show that.”

The researchers will also be able to study whether climate affects microbial communities. “Does a Hawaiian cow look like a California cow in terms of fecal bacteria composition? That’s a good question and something we’ll be able to find out,” he said.

They are working closely with the U.S. Environmental Protection Agency (EPA), which is looking at new technologies for what it calls “next generation compliance.” Ultimately the goal is to develop their method—possibly with a downsized version of the PhyloChip—to the point where it can be universally used in any location and by non-experts.

Dubinsky says the method should also be useful with the burgeoning issue of algal blooms, to understand, for example, the processes by which they form, the microbial dynamics before and after a bloom, and specifically, whether runoff from livestock production in the Midwest is related to algal blooms in the Great Lakes, a question they’re investigating with the EPA.

# # #

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Updated: October 5, 2016

This society will not have healthy children without having healthy home and school environments.

A healthy child in a healthy family who attends a healthy school in a healthy neighborhood ©

Dr. Wilda says this about that ©

Blogs by Dr. Wilda:

COMMENTS FROM AN OLD FART©

http://drwildaoldfart.wordpress.com/

Dr. Wilda Reviews ©

http://drwildareviews.wordpress.com/

Dr. Wilda ©

https://drwilda.com/

 

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: